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Introduction

¢ Inherent openness in wireless communications channel:
eavesdropping and jamming
e To overcome security threat at different layers
e Cryptography
e at higher layers of the protocol stack
e based on limited computational power at Eve

e Techniques like frequency hopping, CDMA

e at the physical layer
e based on limited knowledge at Eve

¢ Information theoretic security
e at the physical layer
e no assumption on Eve’s computational power
e no assumption on Eve’s available information



Notion of Secrecy

e How information can be communicated to the legitimate
Rx, while keeping it secret from eavesdropper?

e How does such a secrecy constraint on communication
affect the limits on information flow in the network?



System Model

e Eavesdropper listen through the same channel as that of
legitimate Rx

e Secret key sharing

e Eavesdropper listen through a different channel as that of
legitimate Rx

e Can channel be exploited in some way ?



Shannon’s Secrecy System

I
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L Eavesdropper

e Message: M

e Key: K € Z*

e Ciphered message: L



Problem: How many key bits (H(K)) are needed so that
Eve cannot obtain any information of the message

M ~ Unif[1 : 2"R]

Encoder: assigns a ciphertext I(m, k) to each message
m € [1:2"R]

Decoder: assigns a message m(l,k) to | and K

Perfect Secrecy:
1. P{M # M(L(M,K),K)} =0
2. I(L,M) =0 (Information Leakage)



Theorem
The sufficient and necessary condition for perfect secrecy is
H(K) > H(M).

Proof.
Proof of Necessity:

H(M) =H(MIL)+I(M;L)

® 1ML

< H(M,K]|L)
=H(KIL)+ H(M|K,L)
2 H(KL)

<H(K)

where (a) follows by the secrecy constraint I(M;L) = 0 and (b)
follows from the communication constraint P{M #M} =0 O



e Disadvantage: Need to share a key as long as that of the
message

e How to overcome:
1. Wiretap channel

2. Secret key generation



Discrete Memoryless Wiretap Channel (DM-WTC)

e Itis a DM-BC with sender X, legitimate receiver Y and
eavesdropper Z

Decoder — M

M — Encoder X" ]7(;1/., :‘7)
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Eavesdropper




A (2"R_n) secrecy code for the DM-WTC consists of
e Message set [1: 2"R] and M ~ Unif[1 : 2"R]
¢ Randomized encoder: generates codeword X"(m)
according to p(x"|m)
 Decoder: Assigns an estimate m € [1 : 2"%] or an error
message

Information leakage rate:

1
R = 1(M;Z")

A rate-leakage pair (R, R, ) is said to be achievable if there
exists a sequence of (2"R, n) codes such that

im P{M =0
n—oo

and  lim R <R,
n—oo

Rate-leakage region R*: Closure of the set of achievable
(R7 RL)



Recap

e Shannon’s Secrecy System

¢ Information leakage rate:

(n) — 1 .Zn
R = —1(M;Z")
e DM-WTC:

Cs = max[I(U;Y) — 1(U;2)]
p(ux)



Secrecy Capacity

e Secrecy capacity: Cs = {R : (R,0) € R*}

Theorem
The secrecy capacity of the DM-WTC is

Cs —g?ax[l(u YY) —1(U;Z2)]

e The secrecy capacity simplifies in degraded case i.e.
p(y,z[x) = p(y[x)p(zly)

Cs = max[I(X Y)—1(X;2)]
p(x)



Gaussian Wiretap Channel
e Outputs:

Y=X+2;
Z=X+2,

where Z; ~ N(0,Nz) and Z; ~ N(0O, Ny)
o Almost-sure average power constraint:

n
P{z)¢mngnp}:1
i=1
e The secrecy capacity of the Gaussian WTC is

¢ Gaussian random codes achieve capacity



Gaussian Vector Wiretap Channel

e Consider a Gaussian vector WTC:

Y =G X+2;
Z=GX+2,

with Kz, = Kz, = | and power constraint P
e Secrecy capacity:

Cs = max log |l + G1KxG] | — log |l + GoKxG] |
Tl"(Kx)

e Addition of spatial dimension helps to increase the secrecy



Confidential Communication Via Shared Key

¢ If the eavesdropper has a better channel than the receiver,
then no secret communication can take place

,
| - l
Xll )/N .
M — Encoder p(y|z) \‘ Decoder |— M
Eavesdropper




e A (2"R 2"R« n) secrecy code for the DMC consists of
o amessage set [1:2"R] and a key set [1 : 2"R«]
¢ randomized encoder: generates a codeword X"(m, k)
according to p(x"|m, k) for each
(m,k) € [1:2"R] x [1:2"R«]
e decoder: assigns an estimate or error to each of the
received sequence

¢ Rate-leakage region R*: set of achievable rate triples
(R7 RK; RL)



e Secrecy capacity with key rate Rk is defined as

CS(RK) = max{R : (R, RK,O) S R*}

Theorem
The secrecy capacity of the DMC p(y|x) with key rate Rk is

Cs(Rk) = min{RK,m(a;d(X;Y)}
pP(Xx



How to share the secret key ?

e Feedback link

¢ Possible to agree on a secret key if the sender and
receiver has an access to correlated sources



Cooperation Vs Secrecy

How do cooperation and secrecy interact

Is there a trade-off or parallelism ?

Cooperation can increase the throughput of the system
Cooperation can also increase the secrecy

Can we get both the benefits?



Interference Channel with Cooperation
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e System model:

Y1 = h11Xg +hoXo + 24
Y2 = ho1Xq + hooXo + 25

e Receiver Cooperative link:
o Cooperative links are noiseless with capacity C;j from Rx-i
to Rx-j
¢ Encoding must satisfy casuality constraints

e ux[n]: function of {y-[1],...,y2[n — 1], u12[1],...,us2[n — 1]}
e ugz[n]: function of {y1[1],...,y1[n — 1], u21[1],...,u2[n — 1]}



o A (2"R1 2"R2 n) code has the following components
e Secret message set Wy ={1,..., M}, k=1,2
e Stochastic encoding function: fi : wx — Xk, Wx € Wy,
k=1,2
e Decoding function: ¢y (yx) = Wy, k = 1,2
¢ Encoding functions at each Rx

e Secrecy is measured as:

R = Liw;.yr) and i ]



e Arate quadruple (Ry, Rz, R,(l), Rl(z)) is said to be
achievable if there exists a sequence of (2"R1, 2"Rz p)
codes such that

; (n) _
n“—>m<>o Pevj =0

; @) ()
im R <R

e To characterize the rate-leakage region



Other problem of interest
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Achievability Proof in case of DM-WTC

Codebook Generation
o Assume that Cs > 0 and fix the pmf p(u, x) that attains it.

e Randomly and independently generate 2"R sequences
u"(l), I € [1: 2"R] and according to [T, p(u;)
e Partition the set of indices [1 : 2”§] into 2"R bins
e The codebook B = [B(m) : m € [1: 2"R]] is revealed to all
parties
Encoding

e Forsendingm € [1: 2"R], the encoder picks an index
| € [(m—1)2"R-R) 1 1. m2"(R-R)] generate
X"(m) ~ [T pxju(Xilui(l)) and transmits it



Decoding
o Decoder declares that { is sent if (u"(f),y") € T
e By the LLN and packing lemma, it can be shown that if

<1(U;Y) = 8(e)

then P(error) - 0asn — co
Information Leakage Rate
e For each B(m), the eavesdropper has roughly
2n[R-R-1(U:Z)] yn(]) sequences such that (u"(l),z") € TN
e IfR — R > 1(U;Z), then eavesdropper has almost no
information about the actual message sent



Encoder Decoder

Eavesdropper




