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Introduction

• Inherent openness in wireless communications channel:
eavesdropping and jamming

• To overcome security threat at different layers
• Cryptography

• at higher layers of the protocol stack
• based on limited computational power at Eve

• Techniques like frequency hopping, CDMA
• at the physical layer
• based on limited knowledge at Eve

• Information theoretic security
• at the physical layer
• no assumption on Eve’s computational power
• no assumption on Eve’s available information



Notion of Secrecy

• How information can be communicated to the legitimate
Rx, while keeping it secret from eavesdropper?

• How does such a secrecy constraint on communication
affect the limits on information flow in the network?



System Model

• Eavesdropper listen through the same channel as that of
legitimate Rx

• Secret key sharing

• Eavesdropper listen through a different channel as that of
legitimate Rx

• Can channel be exploited in some way ?



Shannon’s Secrecy System

• Message: M

• Key: K ∈ Z
+

• Ciphered message: L



• Problem: How many key bits (H(K )) are needed so that
Eve cannot obtain any information of the message

• M ∼ Unif[1 : 2nR]

• Encoder: assigns a ciphertext l(m, k) to each message
m ∈ [1 : 2nR]

• Decoder: assigns a message m̂(l , k) to l and K

• Perfect Secrecy:
1. P{M 6= M̂(L(M,K ),K )} = 0
2. I(L;M) = 0 (Information Leakage)



Theorem
The sufficient and necessary condition for perfect secrecy is
H(K ) ≥ H(M).

Proof.
Proof of Necessity:

H(M) = H(M|L) + I(M;L)
(a)
= H(M/L)

≤ H(M,K |L)

= H(K |L) + H(M|K ,L)
(b)
= H(K |L)

≤ H(K )

where (a) follows by the secrecy constraint I(M;L) = 0 and (b)
follows from the communication constraint P{M 6= M̂} = 0



• Disadvantage: Need to share a key as long as that of the
message

• How to overcome:
1. Wiretap channel

2. Secret key generation



Discrete Memoryless Wiretap Channel (DM-WTC)

• It is a DM-BC with sender X , legitimate receiver Y and
eavesdropper Z



• A (2nR,n) secrecy code for the DM-WTC consists of
• Message set [1 : 2nR] and M ∼ Unif[1 : 2nR]
• Randomized encoder: generates codeword Xn(m)

according to p(xn|m)
• Decoder: Assigns an estimate m̂ ∈ [1 : 2nR ] or an error

message

• Information leakage rate:

R(n)
L =

1
n

I(M;Z n)

• A rate-leakage pair (R,RL) is said to be achievable if there
exists a sequence of (2nR ,n) codes such that

lim
n→∞

P(n)
e = 0

and lim
n→∞

R(n)
L ≤ RL

• Rate-leakage region R
∗: Closure of the set of achievable

(R,RL)



Recap

• Shannon’s Secrecy System

• Information leakage rate:

R(n)
L =

1
n

I(M;Z n)

• DM-WTC:
CS = max

p(u,x)
[I(U;Y )− I(U;Z )]



Secrecy Capacity

• Secrecy capacity: CS = {R : (R,0) ∈ R
∗}

Theorem
The secrecy capacity of the DM-WTC is

CS = max
p(u,x)

[I(U;Y )− I(U;Z )]

• The secrecy capacity simplifies in degraded case i.e.
p(y , z|x) = p(y |x)p(z|y)

CS = max
p(x)

[I(X ;Y )− I(X ;Z )]



Gaussian Wiretap Channel
• Outputs:

Y = X + Z1

Z = X + Z2

where Z1 ∼ N(0,N1) and Z2 ∼ N(0,N2)

• Almost-sure average power constraint:

P

{

n
∑

i=1

X 2
i (m) ≤ nP

}

= 1

• The secrecy capacity of the Gaussian WTC is

CS =

[

C(
P
N1

)− C(
P
N2

)

]+

• Gaussian random codes achieve capacity



Gaussian Vector Wiretap Channel

• Consider a Gaussian vector WTC:

Y = G1X + Z1

Z = G2X + Z2

with KZ1
= KZ2

= I and power constraint P

• Secrecy capacity:

CS = max
Tr(KX)

log |I + G1KXGT
1 | − log |I + G2KXGT

2 |

• Addition of spatial dimension helps to increase the secrecy



Confidential Communication Via Shared Key

• If the eavesdropper has a better channel than the receiver,
then no secret communication can take place



• A (2nR,2nRK ,n) secrecy code for the DMC consists of
• a message set [1 : 2nR ] and a key set [1 : 2nRK ]
• randomized encoder: generates a codeword Xn(m, k)

according to p(xn|m, k) for each
(m, k) ∈ [1 : 2nR]× [1 : 2nRK ]

• decoder: assigns an estimate or error to each of the
received sequence

• Rate-leakage region R
∗: set of achievable rate triples

(R,RK ,RL)



• Secrecy capacity with key rate RK is defined as

CS(RK ) = max{R : (R,RK ,0) ∈ R
∗}

Theorem
The secrecy capacity of the DMC p(y |x) with key rate RK is

CS(RK ) = min{RK ,max
p(x)

I(X ;Y )}



How to share the secret key ?

• Feedback link

• Possible to agree on a secret key if the sender and
receiver has an access to correlated sources



Cooperation Vs Secrecy

• How do cooperation and secrecy interact

• Is there a trade-off or parallelism ?

• Cooperation can increase the throughput of the system

• Cooperation can also increase the secrecy

• Can we get both the benefits?



Interference Channel with Cooperation

Rx − 1Tx − 1

Tx − 2 Rx −2

C12 C21

m 1

m 2

m 1

m 2



• System model:

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2

• Receiver Cooperative link:
• Cooperative links are noiseless with capacity Cij from Rx-i

to Rx-j

• Encoding must satisfy casuality constraints
• u21[n]: function of {y2[1], . . . , y2[n − 1], u12[1], . . . , u12[n − 1]}
• u12[n]: function of {y1[1], . . . , y1[n − 1], u21[1], . . . , u21[n − 1]}



• A (2nR1 ,2nR2 ,n) code has the following components
• Secret message set Wk = {1, . . . ,Mk}, k = 1, 2
• Stochastic encoding function: fk : wk → xk , wk ∈ Wk ,

k = 1, 2
• Decoding function: φk (yk ) = ŵk , k = 1, 2
• Encoding functions at each Rx

• Secrecy is measured as:

R(i)
l =

1
n

I(wj , y
n
i ) and i 6= j



• A rate quadruple (R1,R2,R
(1)
l ,R(2)

l ) is said to be
achievable if there exists a sequence of (2nR1 ,2nR2 ,n)
codes such that

lim
n→∞

P(n)
e,j = 0

lim
n→∞

R(j)
l ≤ R(j)

l

• To characterize the rate-leakage region



Other problem of interest



Achievability Proof in case of DM-WTC

Codebook Generation
• Assume that Cs > 0 and fix the pmf p(u, x) that attains it.

• Randomly and independently generate 2nR sequences
un(l), l ∈ [1 : 2nR] and according to

∏n
i=1 p(ui)

• Partition the set of indices [1 : 2nR] into 2nR bins

• The codebook B = [B(m) : m ∈ [1 : 2nR]] is revealed to all
parties

Encoding
• For sending m ∈ [1 : 2nR], the encoder picks an index

l ∈ [(m − 1)2n(R−R) + 1 : m2n(R−R)], generate
X n(m) ∼

∏n
i=1 pX |U(xi |ui(l)) and transmits it



Decoding

• Decoder declares that l̂ is sent if (un(̂l), yn) ∈ T (n)
ǫ

• By the LLN and packing lemma, it can be shown that if

R < I(U;Y )− δ(ǫ)

then P(error) → 0 as n → ∞

Information Leakage Rate
• For each B(m), the eavesdropper has roughly

2n[R−R−I(U;Z )] un(l) sequences such that (un(l), zn) ∈ T n
ǫ

• If R − R > I(U;Z ), then eavesdropper has almost no
information about the actual message sent




