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Method of types (MoT)



Type or empirical probability distribution
I Let xn = (x1, x2 . . . xn) be n length sequence drawn from

the alphabet set A

I Alphabet set A =
{

a1,a2 . . . a|A|
}

I Type or empirical probability distribution of the seq xn:

Pxn(a) =
N(a | xn)

n
, a ∈ A

I Type Pxn(a) is a pmf on A

I Example: A = {0,1} and, x8 = (0,0,1,0,1,1,0,0)

TypePx8 =

(
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8
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Type or empirical probability distribution

I Set Pn contains all possible types (empirical probability
distributions) for n length sequences

I Example: Say, A = {0,1}

Then, Pn =

{(
0
n
,
n
n

)
,

(
1
n
,
n − 1

n

)
. . .

(
n
n
,

0
n

)}



Type class

I Type class: set of all sequences of same type

T (P) =
{

xn ∈ An such that Pxn = P
}

I Example: Say, A = {0,1}, n = 5 and P =
(3

5 ,
2
5

)
T (P) =


(1,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0), (1,0,0,0,1),
(0,1,1,0,0), (0,1,0,1,0), (0,1,0,0,1), (0,0,1,1,0),

(0,0,1,0,1), (0,0,0,1,1)


I All sequences in type class T (P) are permutations of one

another



Size of a type class

I For a type class P ∈ Pn, its size is given by

|T (P)| = No. of n length sequences of type P

=
n!

(nP(a1)!)(nP(a2)!) . . . (nP(a|A|)!)

I Exact size is diffcult to work with

I Exponential upper and lower bounds exist for |T (P)|

1
(n + 1)|A|

· 2nH(P) ≤ |T (P)| ≤ 2nH(P)



Number of types

I The number of types grows polynomially with n

|Pn| ≤ (n + 1)|A|

I Proof: Trivial



Observations

I For fixed n,
1. The number of sequences is exponential in n
2. There are only polynomial number of types

I There is at least one type P ∈ Pn with exponential many
sequences in the type class T (P)

I As n→∞, the largest type class has essentially the same
number of sequences as the entire set of sequences (upto
first order in exponent)



Why is MoT useful?

I As n increases, a structure is revealed about the set of
types associated with observed sequences

I Some types are observed much more frequently than
others

I MoT is useful in expressing the properties of an observed
sequence in terms of its type.



Probability of a sequence

I The probability of a sequence xn emitted by a DMS with
pmf Q : A → [0,1] is given by

Q(xn) = 2−n(H(Pxn )+D(Pxn ||Q))

I Proof: We work out

I Sequences whose type does not match with Q (in KL
diverence sense) are exponential less likely to occur



Probability of a type class

I The probability that a DMS emits a sequence belonging to
type class T (P) can be bounded as:

1
(n + 1)|A|

· 2−nD(P||Q) ≤ Qn(T (P)) ≤ 2−nD(P||Q)

I Proof: We work out



Summary of main results

Probability simplex

T (Pxn)

T (Pj)

Pj

Pxn

An

xn

T (Pi)
Pi

1. |Pn| ≤ (n + 1)|A| Polynomial number of types

2. Qn(xn) = 2−n(H(P)+D(P||Q)) Exact prob. of seqn of type P under Q

3. |T (P)| ≈ 2nH(P) Approx no. of sequence of each type

4. Qn(T (P)) ≈ 2−nD(P||Q) Approx. prob. of type T(P) under Q



For large n

Probability simplex

T (Pi)

T (Pj)

Pj

Q

Pi

An

ε

Relative entropy neighborhood of Q

{P : D(P ||Q) < ε}



Weak law of large numbers



Typical set
I Probability of n length sequence belonging to type class

T (P)
Qn(T (P)) ≈ 2−nD(P||Q)

I Sequences of type P with large D(P||Q) are exponentially
less likely to occur

I Sequences of type P within small relative entropy distance
of source Q occur with very high probability

I We define a typical set of sequences T ε
Q as

T ε
Q =

{
xn ∈ T (P) | P ∈ Pn and D(P||Q) ≤ ε

}
I As n→∞, P(xn /∈ T ε

Q)→ 0



Law of large numbers (MoT perspective)

I We show that as n→∞, P(xn /∈ T ε
Q) tends to 0

P(xn /∈ T ε
Q) =

∑
P : D(P||Q)>ε

Qn (T (P))

≤
∑

P : D(P||Q)>ε

2−nD(P||Q)

≤
∑

P : D(P||Q)>ε

2−nε

≤
∑
Pn

2−nε

≤ (n + 1)|A|2−nε

≤ 2−n(ε − |A|log(n+1)
n ) →

n−→∞
0



Large deviation theory



Large deviation theory (LDT)

I LDT studies the probability of rare events i.e. events not
covered by law of large numbers

I Examples:

I What is the probability that 800 times head occurs in 1000
fair coin tosses?

I What is the probability that mean of a sequence (emitted by
DMS X ) is larger than T , where T is much larger than E(X )



Large deviation theory (LDT)

I A more general question answered by LDT:

Let E be a subset of pmf’s and let Q be the source
distribution. Then, what is the probability that Q emits a
sequence whose type belongs to E

I In other words, LDT talks about Q(E) =
∑

xn:Pxn∈E

Qn(xn)



Large deviation theory (LDT)

I If E contains a relative entropy neighborhood of Q, then
Q(E)→ 1

I If E does not contain Q, then Q(E)→ 0. The question is:
how fast ?

P
Q

E

P

Q

E



Sanov’s theorem
I Let x1, x2 . . . xn be i.i.d. Q(x)

I If E ⊂ Pn be a closed convex set of probability distributions

I Then,
Qn(E) ≈ 2−nD(P∗||Q)

where
P∗ = arg min

P∈E
D(P||Q)

P
Q

E P ∗ = arg min D(P ||Q)
P ∈ E



Example of Sanov’s theorem
I Consider x1, x2 . . . xn to be emitted by DMS according to

pmf Q

I Question:

What can we say about P(1
n

n∑
i=1

gj(xi) ≤ αj , j = 1,2, . . . k) ?

I Define set E as

E =

{
P :
∑

a

P(a)gj(a) ≤ αj , j = 1,2 . . . k

}

I We find closest distribution P∗ ∈ E to Q

P∗ = arg min
P∈E

D(P||Q)

I From Sanov’s theorem, desired probability is ≈ 2−nD(P∗||Q)



Example of Sanov’s theorem
I Finding P∗ ∈ E closest to Q is a constrained convex

optimization problem

P∗ = arg min
P∈E

D(P||Q)

I Solved using Lagrangian multipliers method:

L(P,λ, ν) =
∑
a∈A

P(a) log
P(a)
Q(a)

+

k∑
j=1

λj

(
αj −

∑
a∈A

P(a)gj(a)

)
+ ν

(∑
a∈A

P(a)− 1

)

I P∗(a) =
1
Z

Q(a)e
∑k

j=1 λj gj (a), a ∈ A



Conditional limit theorem
I Let E be a closed convex subset of Pn

I Let x1, x2 . . . xn be i.i.d. Q(x) /∈ E

I Then, as n −→∞
P(x1 = a | Pxn ∈ E) −→

p
P∗(a)

where
P∗ = arg min

P∈E
D(P||Q)

P
Q

E P ∗ = arg min D(P ||Q)
P ∈ E


