Method of Types and Large Deviation Theory

Saurabh Khanna,

Signal Processing for Communication, ECE, IISc

Outline

- Method of types
- Definitions
- Basic properties
- Large deviation theory
- Sanov's theorem
- Conditional limit theorem

References

- Information Theory and Statistics, Chapter-12 of Elements in Information Theory, Cover and Thomas
- Short course on Information Theory and Statistics, Mauro Barni, Univ. of Siena, Italy

Method of types (MoT)

Type or empirical probability distribution

- Let $\mathbf{x}^{n}=\left(x_{1}, x_{2} \ldots x_{n}\right)$ be n length sequence drawn from the alphabet set \mathcal{A}
- Alphabet set $\mathcal{A}=\left\{a_{1}, a_{2} \ldots a_{|\mathcal{A}|}\right\}$
- Type or empirical probability distribution of the seq \mathbf{x}^{n} :

$$
P_{\mathbf{x}^{n}}(a)=\frac{N\left(a \mid \mathbf{x}^{n}\right)}{n}, \quad a \in \mathcal{A}
$$

- Type $P_{\mathbf{x}^{n}}(a)$ is a pmf on \mathcal{A}
- Example: $\mathcal{A}=\{0,1\}$ and, $\mathbf{x}^{8}=(0,0,1,0,1,1,0,0)$

$$
\text { Type } P_{\mathbf{x}^{8}}=\left(\frac{5}{8}, \frac{3}{8}\right)
$$

Type or empirical probability distribution

- Set \mathcal{P}_{n} contains all possible types (empirical probability distributions) for n length sequences
- Example: Say, $\mathcal{A}=\{0,1\}$

$$
\text { Then, } \mathcal{P}_{n}=\left\{\left(\frac{0}{n}, \frac{n}{n}\right),\left(\frac{1}{n}, \frac{n-1}{n}\right) \ldots\left(\frac{n}{n}, \frac{0}{n}\right)\right\}
$$

Type class

- Type class: set of all sequences of same type

$$
T(P)=\left\{\mathbf{x}^{n} \in \mathcal{A}^{n} \text { such that } P_{\mathbf{x}^{n}}=P\right\}
$$

- Example: Say, $\mathcal{A}=\{0,1\}, n=5$ and $P=\left(\frac{3}{5}, \frac{2}{5}\right)$

$$
T(P)=\left\{\begin{array}{c}
(1,1,0,0,0),(1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1) \\
(0,1,1,0,0),(0,1,0,1,0),(0,1,0,0,1),(0,0,1,1,0) \\
(0,0,1,0,1),(0,0,0,1,1)
\end{array}\right\}
$$

- All sequences in type class $T(P)$ are permutations of one another

Size of a type class

- For a type class $P \in \mathcal{P}_{n}$, its size is given by
$|T(P)|=$ No. of n length sequences of type P

$$
=\frac{n!}{\left(n P\left(a_{1}\right)!\right)\left(n P\left(a_{2}\right)!\right) \ldots\left(n P\left(a_{\mid \mathcal{A})}\right)!\right)}
$$

- Exact size is diffcult to work with
- Exponential upper and lower bounds exist for $|T(P)|$

$$
\frac{1}{(n+1)^{\mid \mathcal{A} A}} \cdot 2^{n H(P)} \leq|T(P)| \leq 2^{n H(P)}
$$

Number of types

- The number of types grows polynomially with n

$$
\left|\mathcal{P}_{n}\right| \leq(n+1)^{|\mathcal{A}|}
$$

- Proof: Trivial

Observations

- For fixed n,

1. The number of sequences is exponential in n
2. There are only polynomial number of types

- There is at least one type $P \in \mathcal{P}_{n}$ with exponential many sequences in the type class $T(P)$
- As $n \rightarrow \infty$, the largest type class has essentially the same number of sequences as the entire set of sequences (upto first order in exponent)

Why is MoT useful?

- As n increases, a structure is revealed about the set of types associated with observed sequences
- Some types are observed much more frequently than others
- MoT is useful in expressing the properties of an observed sequence in terms of its type.

Probability of a sequence

- The probability of a sequence \mathbf{x}^{n} emitted by a DMS with $\mathrm{pmf} Q: \mathcal{A} \rightarrow[0,1]$ is given by

$$
Q\left(\mathbf{x}^{n}\right)=2^{-n\left(H\left(P_{x^{n}}\right)+D\left(P_{x^{n}} \| Q\right)\right)}
$$

- Proof: We work out
- Sequences whose type does not match with Q (in KL diverence sense) are exponential less likely to occur

Probability of a type class

- The probability that a DMS emits a sequence belonging to type class $T(P)$ can be bounded as:

$$
\frac{1}{(n+1)^{|\mathcal{A}|}} \cdot 2^{-n D(P \| Q Q)} \leq Q^{n}(T(P)) \leq 2^{-n D(P \| Q)}
$$

- Proof: We work out

Summary of main results

$$
\text { 1. }\left|\mathcal{P}^{n}\right| \leq(n+1)^{|\mathcal{A}|}
$$

Polynomial number of types
2. $Q^{n}\left(\mathbf{x}^{n}\right)=2^{-n(H(P)+D(P \| Q))} \quad$ Exact prob. of seqn of type P under Q
3. $|T(P)| \approx 2^{n H(P)}$

Approx no. of sequence of each type
4. $Q^{n}(T(P)) \approx 2^{-n D(P \| Q)}$

Approx. prob. of type $\mathrm{T}(\mathrm{P})$ under Q

For large n

Weak law of large numbers

Typical set

- Probability of n length sequence belonging to type class $T(P)$

$$
Q^{n}(T(P)) \approx 2^{-n D(P \| Q)}
$$

- Sequences of type P with large $D(P \| Q)$ are exponentially less likely to occur
- Sequences of type P within small relative entropy distance of source Q occur with very high probability
- We define a typical set of sequences T_{Q}^{ϵ} as

$$
T_{Q}^{\epsilon}=\left\{\mathbf{x}^{n} \in T(P) \mid P \in \mathcal{P}_{n} \text { and } D(P \| Q) \leq \epsilon\right\}
$$

- As $n \rightarrow \infty, \mathbb{P}\left(\mathbf{x}^{n} \notin T_{Q}^{\epsilon}\right) \rightarrow 0$

Law of large numbers (MoT perspective)

- We show that as $n \rightarrow \infty, \mathbb{P}\left(\mathbf{x}^{n} \notin T_{Q}^{\epsilon}\right)$ tends to 0

$$
\begin{aligned}
\mathbb{P}\left(\mathbf{x}^{n} \notin T_{Q}^{\epsilon}\right) & =\sum_{P: D(P \| Q)>\epsilon} Q^{n}(T(P)) \\
& \leq \sum_{P: D(P \| Q)>\epsilon} 2^{-n D(P \| Q)} \\
& \leq \sum_{P: D(P \| Q)>\epsilon} 2^{-n \epsilon} \\
& \leq \sum_{\mathcal{P}_{n}} 2^{-n \epsilon} \\
& \leq(n+1)^{|\mathcal{A}|} 2^{-n \epsilon} \\
& \leq 2^{-n\left(\epsilon-\frac{|\mathcal{A}| \log (n+1)}{n}\right)}{ }_{n \rightarrow \infty} 0
\end{aligned}
$$

Large deviation theory

Large deviation theory (LDT)

- LDT studies the probability of rare events i.e. events not covered by law of large numbers
- Examples:
- What is the probability that 800 times head occurs in 1000 fair coin tosses?
- What is the probability that mean of a sequence (emitted by DMS X) is larger than T, where T is much larger than $E(X)$

Large deviation theory (LDT)

- A more general question answered by LDT:

Let E be a subset of pmf's and let Q be the source distribution. Then, what is the probability that Q emits a sequence whose type belongs to E

- In other words, LDT talks about $Q(E)=\sum_{\mathbf{x}^{n}: P_{\mathbf{x}^{n}} \in E} Q^{n}\left(\mathbf{x}^{n}\right)$

Large deviation theory (LDT)

- If E contains a relative entropy neighborhood of Q, then $Q(E) \rightarrow 1$
- If E does not contain Q, then $Q(E) \rightarrow 0$. The question is: how fast?

Sanov's theorem

- Let $x_{1}, x_{2} \ldots x_{n}$ be i.i.d. $\quad Q(x)$
- If $E \subset \mathcal{P}_{n}$ be a closed convex set of probability distributions
- Then,

$$
Q^{n}(E) \approx 2^{-n D\left(P^{*} \| Q\right)}
$$

where

$$
P^{*}=\underset{P \in E}{\arg \min } D(P \| Q)
$$

Example of Sanov's theorem

- Consider $x_{1}, x_{2} \ldots x_{n}$ to be emitted by DMS according to pmf Q
- Question:

What can we say about $\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} g_{j}\left(x_{i}\right) \leq \alpha_{j}, j=1,2, \ldots k\right) ?$

- Define set E as

$$
E=\left\{P: \sum_{a} P(a) g_{j}(a) \leq \alpha_{j}, j=1,2 \ldots k\right\}
$$

- We find closest distribution $P^{*} \in E$ to Q

$$
P^{*}=\underset{P \in E}{\arg \min } D(P \| Q)
$$

- From Sanov's theorem, desired probability is $\approx 2^{-n D\left(P^{*}| | Q\right)}$

Example of Sanov's theorem

- Finding $P^{*} \in E$ closest to Q is a constrained convex optimization problem

$$
P^{*}=\underset{P \in E}{\arg \min } D(P \| Q)
$$

- Solved using Lagrangian multipliers method:

$$
\begin{aligned}
L(P, \boldsymbol{\lambda}, \nu)= & \sum_{a \in \mathcal{A}} P(a) \log \frac{P(a)}{Q(a)}+ \\
& \sum_{j=1}^{k} \lambda_{j}\left(\alpha_{j}-\sum_{a \in \mathcal{A}} P(a) g_{j}(a)\right)+\nu\left(\sum_{a \in \mathcal{A}} P(a)-1\right)
\end{aligned}
$$

$$
P^{*}(a)=\frac{1}{Z} Q(a) e^{\sum_{j=1}^{k} \lambda_{j} g_{j}(a)}, \quad a \in \mathcal{A}
$$

Conditional limit theorem

- Let E be a closed convex subset of \mathcal{P}_{n}
- Let $x_{1}, x_{2} \ldots x_{n}$ be i.i.d. $\quad Q(x) \notin E$
- Then, as $n \longrightarrow \infty$

$$
\mathbb{P}\left(x_{1}=a \mid P_{\mathbf{x}^{n}} \in E\right) \underset{p}{\longrightarrow} P^{*}(a)
$$

where

$$
P^{*}=\underset{P \in E}{\arg \min } D(P \| Q)
$$

