Method of Types and Large Deviation Theory

Saurabh Khanna,

Signal Processing for Communication, ECE, IISc

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Outline

- Method of types
 - Definitions
 - Basic properties
- Large deviation theory
 - Sanov's theorem
 - Conditional limit theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

References

- Information Theory and Statistics, Chapter-12 of Elements in Information Theory, Cover and Thomas
- Short course on Information Theory and Statistics, Mauro Barni, Univ. of Siena, Italy

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Method of types (MoT)

Type or empirical probability distribution

Let **x**ⁿ = (x₁, x₂...x_n) be *n* length sequence drawn from the alphabet set A

• Alphabet set
$$\mathcal{A} = \{a_1, a_2 \dots a_{|\mathcal{A}|}\}$$

Type or empirical probability distribution of the seq xⁿ:

$$P_{\mathbf{x}^n}(a) = \frac{N(a \mid \mathbf{x}^n)}{n}, \quad a \in \mathcal{A}$$

• Example: $A = \{0, 1\}$ and, $\mathbf{x}^8 = (0, 0, 1, 0, 1, 1, 0, 0)$

Type
$$P_{\mathbf{x}^8} = \left(\frac{5}{8}, \frac{3}{8}\right)$$

Type or empirical probability distribution

 Set *P_n* contains all possible types (empirical probability distributions) for *n* length sequences

Then,
$$\mathcal{P}_n = \left\{ \left(\frac{0}{n}, \frac{n}{n}\right), \left(\frac{1}{n}, \frac{n-1}{n}\right) \dots \left(\frac{n}{n}, \frac{0}{n}\right) \right\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Type class

Type class: set of all sequences of same type

$$T(P) = \{\mathbf{x}^n \in \mathcal{A}^n \text{ such that } P_{\mathbf{x}^n} = P\}$$

• Example: Say,
$$A = \{0, 1\}, n = 5$$
 and $P = (\frac{3}{5}, \frac{2}{5})$

 $T(P) = \left\{ \begin{array}{l} (1,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0), (1,0,0,0,1), \\ (0,1,1,0,0), (0,1,0,1,0), (0,1,0,0,1), (0,0,1,1,0), \\ (0,0,1,0,1), (0,0,0,1,1) \end{array} \right\}$

 All sequences in type class T(P) are permutations of one another

Size of a type class

For a type class $P \in \mathcal{P}_n$, its size is given by

$$T(P)| = \text{No. of n length sequences of type P} \\ = \frac{n!}{(nP(a_1)!)(nP(a_2)!)\dots(nP(a_{|\mathcal{A}|})!)}$$

- Exact size is diffcult to work with
- Exponential upper and lower bounds exist for |T(P)|

$$\frac{1}{(n+1)^{|\mathcal{A}|}} \cdot 2^{nH(P)} \le |T(P)| \le 2^{nH(P)}$$

Number of types

The number of types grows polynomially with n

$$|\mathcal{P}_n| \leq (n+1)^{|\mathcal{A}|}$$

Proof: Trivial

Observations

► For fixed *n*,

- 1. The number of sequences is exponential in *n*
- 2. There are only polynomial number of types
- ► There is at least one type P ∈ P_n with exponential many sequences in the type class T(P)
- As n→∞, the largest type class has essentially the same number of sequences as the entire set of sequences (upto first order in exponent)

(日) (日) (日) (日) (日) (日) (日)

Why is MoT useful?

- As n increases, a structure is revealed about the set of types associated with observed sequences
- Some types are observed much more frequently than others
- MoT is useful in expressing the properties of an observed sequence in terms of its type.

(ロ) (同) (三) (三) (三) (○) (○)

Probability of a sequence

The probability of a sequence xⁿ emitted by a DMS with pmf Q : A → [0, 1] is given by

$$Q(\mathbf{x}^n) = 2^{-n(H(P_{\mathbf{x}^n}) + D(P_{\mathbf{x}^n}||Q))}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Proof: We work out
- Sequences whose type does not match with Q (in KL diverence sense) are exponential less likely to occur

Probability of a type class

The probability that a DMS emits a sequence belonging to type class T(P) can be bounded as:

$$\frac{1}{(n+1)^{|\mathcal{A}|}} \cdot 2^{-nD(P||Q)} \leq Q^n(T(P)) \leq 2^{-nD(P||Q)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof: We work out

Summary of main results

1. $|\mathcal{P}^n| \le (n+1)^{|\mathcal{A}|}$

Polynomial number of types

2. $Q^n(\mathbf{x}^n) = 2^{-n(H(P)+D(P||Q))}$

3. $|T(P)| \approx 2^{nH(P)}$

Exact prob. of seqn of type P under Q

Approx no. of sequence of each type

4. $Q^n(T(P)) \approx 2^{-nD(P||Q)}$

Approx. prob. of type T(P) under Q

For large *n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Weak law of large numbers

Typical set

- ► Probability of *n* length sequence belonging to type class T(P) $Q^n(T(P)) \approx 2^{-nD(P||Q)}$
- Sequences of type P with large D(P||Q) are exponentially less likely to occur
- Sequences of type P within small relative entropy distance of source Q occur with very high probability
- We define a typical set of sequences T_Q^{ϵ} as

$$T_Q^{\epsilon} = \left\{ \mathbf{x}^n \in T(P) \mid P \in \mathcal{P}_n \text{ and } D(P||Q) \leq \epsilon \right\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• As
$$n \to \infty$$
, $\mathbb{P}(\mathbf{x}^n \notin T_Q^{\epsilon}) \to 0$

Law of large numbers (MoT perspective)

• We show that as $n \to \infty$, $\mathbb{P}(\mathbf{x}^n \notin T_O^{\epsilon})$ tends to 0

$$\mathbb{P}(\mathbf{x}^{n} \notin T_{Q}^{\epsilon}) = \sum_{\substack{P : D(P||Q) > \epsilon}} Q^{n}(T(P))$$

$$\leq \sum_{\substack{P : D(P||Q) > \epsilon}} 2^{-nD(P||Q)}$$

$$\leq \sum_{\substack{P : D(P||Q) > \epsilon}} 2^{-n\epsilon}$$

$$\leq \sum_{\substack{P_{n}}} 2^{-n\epsilon}$$

$$\leq (n+1)^{|\mathcal{A}|} 2^{-n\epsilon}$$

$$\leq 2^{-n(\epsilon - \frac{|\mathcal{A}|\log(n+1)}{n})} \xrightarrow{\rightarrow} 0$$

▲□▶▲圖▶★필▶★필▶ 週 の�?

Large deviation theory

Large deviation theory (LDT)

 LDT studies the probability of rare events i.e. events not covered by law of large numbers

Examples:

- What is the probability that 800 times head occurs in 1000 fair coin tosses?
- What is the probability that mean of a sequence (emitted by DMS X) is larger than T, where T is much larger than E(X)

(日) (日) (日) (日) (日) (日) (日)

Large deviation theory (LDT)

A more general question answered by LDT:

Let *E* be a subset of pmf's and let *Q* be the source distribution. Then, what is the probability that *Q* emits a sequence whose type belongs to *E*

► In other words, LDT talks about $Q(E) = \sum_{\mathbf{x}^n: P_{\mathbf{x}^n} \in E} Q^n(\mathbf{x}^n)$

(日) (日) (日) (日) (日) (日) (日)

Large deviation theory (LDT)

- If *E* contains a relative entropy neighborhood of *Q*, then *Q*(*E*) → 1
- If E does not contain Q, then Q(E) → 0. The question is: how fast ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sanov's theorem

• Let $x_1, x_2 \dots x_n$ be i.i.d. Q(x)

• If $E \subset \mathcal{P}_n$ be a closed convex set of probability distributions

► Then,

$$Q^n(E) \approx 2^{-nD(P^*||Q)}$$

where

$$P^* = rgmin_{P \in E} D(P||Q)$$

Example of Sanov's theorem

- Consider x₁, x₂... x_n to be emitted by DMS according to pmf Q
- Question:

What can we say about
$$\mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}g_{j}(x_{i}) \leq \alpha_{j}, j = 1, 2, ..., k)$$
?

► Define set *E* as

$$E = \left\{ P : \sum_{a} P(a)g_j(a) \le \alpha_j, \ j = 1, 2 \dots k \right\}$$

• We find closest distribution $P^* \in E$ to Q

$$P^* = \operatorname*{arg\ min}_{P\in E} D(P||Q)$$

From Sanov's theorem, desired probability is $\approx 2^{-nD(P^*||Q)}$

Example of Sanov's theorem

► Finding P* ∈ E closest to Q is a constrained convex optimization problem

$$P^* = \operatorname*{arg\ min}_{P\in E} D(P||Q)$$

Solved using Lagrangian multipliers method:

$$L(P, \lambda, \nu) = \sum_{a \in \mathcal{A}} P(a) \log \frac{P(a)}{Q(a)} + \sum_{j=1}^{k} \lambda_j \left(\alpha_j - \sum_{a \in \mathcal{A}} P(a) g_j(a) \right) + \nu \left(\sum_{a \in \mathcal{A}} P(a) - 1 \right)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

►
$$P^*(a) = \frac{1}{Z}Q(a)e^{\sum_{j=1}^k \lambda_j g_j(a)}, \quad a \in \mathcal{A}$$

Conditional limit theorem

Let E be a closed convex subset of P_n

• Let
$$x_1, x_2 \dots x_n$$
 be i.i.d. $Q(x) \notin E$

• Then, as
$$n \longrightarrow \infty$$

 $\mathbb{P}(x_1 = a \mid P_{\mathbf{x}^n} \in E) \xrightarrow{p} P^*(a)$

where

$$P^* = \operatorname*{arg\ min}_{P\in E} D(P||Q)$$

