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Channel Coding- I

Shannon’s channel coding theorem proves that reliable communication is

possible when R < C.

Channel capacity is achievable only when code length approaches infinity.

Practical channel codes fall into two categories:

Algebraic codes and

Iteratively decodable codes

Coding and decoding complexity increases exponentially with length of

the codes.
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Types of Encoders and Decoders- I

Encoding

Linear block codes

Convolutional codes

Modern codes (Turbo, LDPC, IRA etc.)

Decoding

ML decoder

List decoder

ML sequence detection decoding

Reduced state decoders (e.g. Fano)

Iterative decoders (e.g., SPA, MAP)
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Types of Encoders and Decoders- II

Issues:

Encoding complexity (for Large block codes)

Decoder complexity (ML decoding, iterative decoding, MAP)

Is there any simple way of achieving capacity with less complex codes ?

Yes! Polar codes of length N provably achieve capacity with O(N log N)

encoding and decoding complexity.
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Channel Translation Function- I

Consider a discrete memoryless channel (DMC) described by the

conditional probability function W = P(Y|X) with X ∈ X as input,

Y ∈ Y as output.

Since it is memoryless, we can say WN = P(YN |XN) =
∏

i P(Yi|Xi).

‘Translate’ the WN channel as in the following diagram.

T. Ganesan (SPC Lab) Polar codes Aug 11th, 2012 8 / 24



Channel Translation Function- II
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where N is 2n.

The equivalent channel representation

x = u


1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

 = uG4
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Channel Translation (Contd.)

That is, the transition probabilities for the two channels are related as

WN(y|u) = WN(y,uGN) ∀ y ∈ YN ,u ∈ XN .

It can be generalized that GN =

 1 0

1 1


︸ ︷︷ ︸

G2

⊗ G2︸︷︷︸
2

⊗ . . .⊗ G2︸︷︷︸
n
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Channel Splitting- I

The translated channel WN can be split into N binary input coordinate

channels

W i
N(y,u

i−1
1 |ui) ,

∑
uN

i+1∈XN−i

1
2N−1 WN(y|u)

where (y,ui−1
1 ) denotes the output of W i

N when ui is its input.

That is, the ith channel output is yi with past channel inputs ui−1
1 as side

information and ui as its input.
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Channel Polarization- I

For large N, W i
N channels polarize its output to be either close to the

output of an ideal channel or worst channel.

In fact, the fraction of channels which polarize to ideal channel is equal to

the capacity of the underlying DMC.

That is, for δ ∈ (0, 1), as N →∞, I(ui, y) ∈ (1− δ, 1] or I(ui, y) ∈ [0, δ).

The fraction of indices i ∈ [1, 2, . . . ,N] for which I(ui, y) ∈ (1− δ, 1]

goes to I(XN ,YN).
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Channel Polarization- II

As an example, consider a BEC, I(X2,Y2) = 2(1− ε), where ε is the

erasure probability and W2

y W(y|u1 = 0) W(y|u1 = 1)

00 (1−ε)2

2 0

01 0 (1−ε)2

2

0E ε(1−ε)
2

ε(1−ε)
2

10 0 (1−ε)2

2

11 (1−ε)2

2
ε(1−ε)

2

1E ε(1−ε)
2

ε(1−ε)
2

E0 ε(1−ε)
2

ε(1−ε)
2

E1 ε(1−ε)
2

ε(1−ε)
2

EE ε2 ε2
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Channel Polarization- III

One can compute W(y, u1|u2 = 0) and W(y, u1|u2 = 1) similarly

assuming u1 is known accurately.

Thus, the channel WN can be split into N channels whose transition

probabilities are specific to a given channel type W.
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Encoding : Coset codes - I

Let GN be the generator matrix and A ⊂ [1, 2, . . .N] is an index set with

K elements. Let Ac denote the complement of A.

The channel input vector x can be written as a sum of 2 vectors. i.e.,

x = uAGA ⊕ uAcGAc

where GA denotes the sub-matrix of G formed by the rows with indices

in A.
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Encoding : Coset codes - II

If suppose uAc is known to both encoder and decoder, then the various

codewords output by the encoder are cosets with the coset index denoted

by uAcGAc .

The coding rate of this code is K
N .
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Successive Cancellation Decoding - I

Using its knowledge of Ac, the decoder estimates the ui by computing

ûi =

 ui, if i ∈ Ac

hi(y, ûi−1
1 ), if i ∈ A

where

hi(y, ûi−1
1 ) =

 0, W(y,ui−1
1 |ui=0)

W(y,ui−1
1 |ui=1)

≥ 1

1, otherwise

for all y ∈ Y , ûi−1
1 ∈ X i−1.
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Probability of decoding Error - I

Let Pe(N,K,A,uAc) denote the probability of error for the SC-decoder

when uA ∈ XK is selected randomly with equal probability.

Pe(N,K,A,uAc) =
1

2K

∑
uA∈XK

∑
y∈YN :û(y) 6=u

WN(y|u)

Averaging this over all choices of uAc we get

Pe(N,K,A) =
1

2N−K

∑
uAc∈XN−K

Pe(N,K,A,uAc)
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Probability of decoding Error - II

It can be shown that for a symmetric binary input DMC W and any

choice of parameter (N,K,A) the above can be upper bounded as

Pe(N,K,A) ≤
∑
i∈A

Z(W i
N)

where Z(W i
N) ,

∑
y∈YN

√
WN(y|ui = 0)WN(y|ui = 1).

Moveover, there exists uAc such that the

Pe(N,K,A,uAc) ≤
∑
i∈A

Z(W i
N)
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Definition of Polar Code - I

Given a BI-DMC W, a GN coset code with parameters (N,K,A,uAc) is

called a Polar code for W if the information set A is chosen as a

K-element subset of [1, . . . ,N] such that

Z(W i
N) ≤ Z(W j

N), ∀i ∈ A, and j ∈ Ac.

Polar codes are channel specific designs and they achieve capacity.

Unlike conventional codes, a polar code designed for one channel may

not be optimal for another channel.

That is, if the SNR changes, the code has to be changed. Hmmm!
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