An Introduction to Polar Codes

T. Ganesan
gana@ti.com
SPC Lab
Aug 11th, 2012

Outline

(1) Introduction
(2) Channel Polarization
(3) Encoder and Decoder
(4) Coding Theorems

- Proofs

(1) Introduction

(2) Channel Polarization

3 Encoder and Decoder

4. Coding Theorems

- Proofs

Channel Coding- I

- Shannon's channel coding theorem proves that reliable communication is possible when $R<C$.
- Channel capacity is achievable only when code length approaches infinity.
- Practical channel codes fall into two categories:
- Algebraic codes and
- Iteratively decodable codes
- Coding and decoding complexity increases exponentially with length of the codes.

Types of Encoders and Decoders- I

- Encoding
- Linear block codes
- Convolutional codes
- Modern codes (Turbo, LDPC, IRA etc.)
- Decoding
- ML decoder
- List decoder
- ML sequence detection decoding
- Reduced state decoders (e.g. Fano)
- Iterative decoders (e.g., SPA, MAP)

Types of Encoders and Decoders- II

- Issues:
- Encoding complexity (for Large block codes)
- Decoder complexity (ML decoding, iterative decoding, MAP)

Is there any simple way of achieving capacity with less complex codes ?
Yes! Polar codes of length N provably achieve capacity with $\mathcal{O}(N \log N)$ encoding and decoding complexity.

(1) Introduction

(2) Channel Polarization

3 Encoder and Decoder

- Proofs

Channel Translation Function- I

- Consider a discrete memoryless channel (DMC) described by the conditional probability function $W=P(Y \mid X)$ with $X \in \mathcal{X}$ as input, $Y \in \mathcal{Y}$ as output.
- Since it is memoryless, we can say $W^{N}=P\left(Y^{N} \mid X^{N}\right)=\prod_{i} P\left(Y_{i} \mid X_{i}\right)$.
- 'Translate' the W^{N} channel as in the following diagram.

Channel Translation Function- II

where N is 2^{n}.

- The equivalent channel representation

$$
\mathbf{x}=\mathbf{u}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]=\mathbf{u} \mathbf{G}_{4}
$$

Channel Translation (Contd.)

- That is, the transition probabilities for the two channels are related as

$$
W_{N}(\mathbf{y} \mid \mathbf{u})=W^{N}\left(\mathbf{y}, \mathbf{u} \mathbf{G}_{N}\right) \forall \mathbf{y} \in \mathcal{Y}^{N}, \mathbf{u} \in \mathcal{X}^{N} .
$$

- It can be generalized that $\mathbf{G}_{N}=\underbrace{\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]}_{\mathbf{G}_{2}} \otimes \underbrace{\mathbf{G}_{2}}_{2} \otimes \ldots \otimes \underbrace{\mathbf{G}_{2}}_{n}$

(1) Introduction

(2) Channel Polarization

3 Encoder and Decoder

4. Coding Theorems

- Proofs

Channel Splitting- I

- The translated channel W_{N} can be split into N binary input coordinate channels

$$
W_{N}^{i}\left(\mathbf{y}, \mathbf{u}_{1}^{i-1} \mid u_{i}\right) \triangleq \sum_{\mathbf{u}_{i+1}^{N} \in \mathcal{X}^{N-i}} \frac{1}{2^{N-1}} W_{N}(\mathbf{y} \mid \mathbf{u})
$$

where $\left(\mathbf{y}, \mathbf{u}_{1}^{i-1}\right)$ denotes the output of W_{N}^{i} when u_{i} is its input.

- That is, the $i^{\text {th }}$ channel output is y_{i} with past channel inputs \mathbf{u}_{1}^{i-1} as side information and u_{i} as its input.

Channel Polarization- I

- For large N, W_{N}^{i} channels polarize its output to be either close to the output of an ideal channel or worst channel.
- In fact, the fraction of channels which polarize to ideal channel is equal to the capacity of the underlying DMC.
- That is, for $\delta \in(0,1)$, as $N \rightarrow \infty, I\left(u_{i}, \mathbf{y}\right) \in(1-\delta, 1]$ or $I\left(u_{i}, \mathbf{y}\right) \in[0, \delta)$.
- The fraction of indices $i \in[1,2, \ldots, N]$ for which $I\left(u_{i}, \mathbf{y}\right) \in(1-\delta, 1]$ goes to $I\left(X^{N}, Y^{N}\right)$.

Channel Polarization- II

- As an example, consider a BEC, $I\left(X^{2}, Y^{2}\right)=2(1-\epsilon)$, where ϵ is the erasure probability and W_{2}

\mathbf{y}	$W\left(\mathbf{y} \mid u_{1}=0\right)$	$W\left(\mathbf{y} \mid u_{1}=1\right)$
00	$\frac{(1-\epsilon)^{2}}{2}$	0
01	0	$\frac{(1-\epsilon)^{2}}{2}$
$0 E$	$\frac{\epsilon(1-\epsilon)}{2}$	$\frac{\epsilon(1-\epsilon)}{2}$
10	0	$\frac{(1-\epsilon)^{2}}{2}$
11	$\frac{(1-\epsilon)^{2}}{2}$	$\frac{\epsilon(1-\epsilon)}{2}$
$1 E$	$\frac{\epsilon(1-\epsilon)}{2}$	$\frac{\epsilon(1-\epsilon)}{2}$
$E 0$	$\frac{\epsilon(1-\epsilon)}{2}$	$\frac{\epsilon(1-\epsilon)}{2}$
$E 1$	$\frac{\epsilon(1-\epsilon)}{2}$	$\frac{\epsilon(1-\epsilon)}{2}$
$E E$	ϵ^{2}	ϵ^{2}

Channel Polarization- III

- One can compute $W\left(\mathbf{y}, u_{1} \mid u_{2}=0\right)$ and $W\left(\mathbf{y}, u_{1} \mid u_{2}=1\right)$ similarly assuming u_{1} is known accurately.
- Thus, the channel W_{N} can be split into N channels whose transition probabilities are specific to a given channel type W.

(2) Channel Polarization

(3) Encoder and Decoder

- Proofs

Encoding : Coset codes - I

- Let \mathbf{G}_{N} be the generator matrix and $\mathcal{A} \subset[1,2, \ldots N]$ is an index set with K elements. Let \mathcal{A}^{c} denote the complement of \mathcal{A}.
- The channel input vector \mathbf{x} can be written as a sum of 2 vectors. i.e.,

$$
\mathbf{x}=\mathbf{u}_{\mathcal{A}} \mathbf{G}_{\mathcal{A}} \oplus \mathbf{u}_{\mathcal{A}^{c}} \mathbf{G}_{\mathcal{A}^{c}}
$$

where $\mathbf{G}_{\mathcal{A}}$ denotes the sub-matrix of \mathbf{G} formed by the rows with indices in \mathcal{A}.

Encoding : Coset codes - II

- If suppose $\mathbf{u}_{\mathcal{A}^{c}}$ is known to both encoder and decoder, then the various codewords output by the encoder are cosets with the coset index denoted by $\mathbf{u}_{\mathcal{A} c} \mathbf{G}_{\mathcal{A}^{c}}$.
- The coding rate of this code is $\frac{K}{N}$.

Successive Cancellation Decoding - I

- Using its knowledge of \mathcal{A}^{c}, the decoder estimates the u_{i} by computing

$$
\hat{u}_{i}= \begin{cases}u_{i}, & \text { if } i \in \mathcal{A}^{c} \\ h_{i}\left(\mathbf{y}, \hat{\mathbf{u}}_{1}^{i-1}\right), & \text { if } i \in \mathcal{A}\end{cases}
$$

where

$$
h_{i}\left(\mathbf{y}, \hat{\mathbf{u}}_{1}^{i-1}\right)= \begin{cases}0, & \frac{W\left(\mathbf{y}, \mathbf{,}, \mathbf{u}_{i-1}^{i-1} \mid u_{i}=0\right)}{W\left(\mathbf{y}, \mathbf{u}_{1}^{-1} \mid u_{i}=1\right)} \geq 1 \\ 1, & \text { otherwise }\end{cases}
$$

for all $\mathbf{y} \in \mathcal{Y}, \hat{\mathbf{u}}_{1}^{i-1} \in \mathcal{X}^{i-1}$.

Probability of decoding Error - I

- Let $P_{e}\left(N, K, \mathcal{A}, \mathbf{u}_{\mathcal{A}^{c}}\right)$ denote the probability of error for the SC-decoder when $\mathbf{u}_{\mathcal{A}} \in \mathcal{X}^{K}$ is selected randomly with equal probability.

$$
P_{e}\left(N, K, \mathcal{A}, \mathbf{u}_{\mathcal{A}^{c}}\right)=\frac{1}{2^{K}} \sum_{\mathbf{u}_{\mathcal{A}} \in \mathcal{X}^{K}} \sum_{\mathbf{y} \in \mathcal{Y}^{N}: \hat{\mathbf{u}}(\mathbf{y}) \neq \mathbf{u}} W_{N}(\mathbf{y} \mid \mathbf{u})
$$

- Averaging this over all choices of $\mathbf{u}_{\mathcal{A}^{c}}$ we get

$$
P_{e}(N, K, \mathcal{A})=\frac{1}{2^{N-K}} \sum_{\mathbf{u}_{\mathcal{A}} \in \mathcal{X}^{N-K}} P_{e}\left(N, K, \mathcal{A}, \mathbf{u}_{\mathcal{A}^{c}}\right)
$$

Probability of decoding Error - II

- It can be shown that for a symmetric binary input DMC W and any choice of parameter (N, K, \mathcal{A}) the above can be upper bounded as

$$
P_{e}(N, K, \mathcal{A}) \leq \sum_{i \in \mathcal{A}} Z\left(W_{N}^{i}\right)
$$

where $Z\left(W_{N}^{i}\right) \triangleq \sum_{\mathbf{y} \in \mathcal{Y}^{N}} \sqrt{W_{N}\left(\mathbf{y} \mid u_{i}=0\right) W_{N}\left(\mathbf{y} \mid u_{i}=1\right)}$.

- Moveover, there exists $\mathbf{u}_{\mathcal{A}^{c}}$ such that the

$$
P_{e}\left(N, K, \mathcal{A}, \mathbf{u}_{\mathcal{A}^{c}}\right) \leq \sum_{i \in \mathcal{A}} Z\left(W_{N}^{i}\right)
$$

Definition of Polar Code - I

- Given a BI-DMC W, a \mathbf{G}_{N} coset code with parameters $\left(N, K, \mathcal{A}, \mathbf{u}_{\mathcal{A}^{c}}\right)$ is called a Polar code for W if the information set \mathcal{A} is chosen as a K-element subset of $[1, \ldots, N]$ such that $Z\left(W_{N}^{i}\right) \leq Z\left(W_{N}^{j}\right), \forall i \in \mathcal{A}$, and $j \in \mathcal{A}^{c}$.
- Polar codes are channel specific designs and they achieve capacity.
- Unlike conventional codes, a polar code designed for one channel may not be optimal for another channel.
- That is, if the SNR changes, the code has to be changed. Hmmm!

(1) Introduction

(2) Channel Polarization
(3) Encoder and Decoder

4 Coding Theorems

- Proofs

References- I

(1) E. Arikan, "Channel Polarization: A Method for Constructing

Capacity-Achieving Codes for Symmetric Binary-Input Memoryless
Channels", IEEE Trans. on Info. Theory, Vol.55, No. 7, Jul. 2009.
(2) S. B. Korada, "Polar Codes for Channel and Source Coding", Ph.D. Thesis, EPFL, Jul. 2009.
(3 E. Sasoglu, "Polar Coding Theorems for Discrete Systems", Ph.D. Thesis, EPFL, Nov. 2011.

