Journal Watch:

IEEE Transanctions on Signal Processing March 2014

Saurabh Khanna,
Signal Processing for Communication, ECE, IISc

Sparse Signal Estimation by Maximally Sparse Convex Optimization.
Authors: Ivan W. Selesnick and Ilker Bayram

- Problem Statement:

$$
\underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg \min }\left\{F(\mathbf{x})=\frac{1}{2}\|\mathbf{y}-\mathbf{H} \mathbf{x}\|_{2}^{2}+\sum_{n=0}^{N-1} \lambda_{n} \phi_{n}\left(\mathbf{x}_{n}\right)\right\}
$$

- To find "non convex" penalties ϕ_{n} which induce sparsity more strongly than ℓ_{1} norm regularization such that overall objective function $F($.$) is convex.$
- Main Idea:
- Balance the +ve second derivative of fit error term against -ve second derivative of penalty terms.
- Select $\phi_{n}(x)$ to be parameterized functions $\phi_{n}\left(x ; a_{n}\right)$, with parameter a_{n}.
- Candidates for ϕ_{n} :
- logarithm penalty: $\frac{1}{a} \log (1+a|x|)$
- arc-tangent penalty: $\frac{2}{a \sqrt{3}}\left(\tan ^{-1}\left(\frac{1+2 a|x|}{\sqrt{3}}\right)\right)$
- How to find a_{n}
- Rewrite $F(\mathbf{x})$ as

$$
F(\mathbf{x})=\left(\frac{1}{2} \mathbf{x}^{T}\left(\mathbf{H}^{\top} \mathbf{H}-\mathbf{R}\right) \mathbf{x}-\mathbf{y}^{\top} \mathbf{H} \mathbf{x}+\frac{1}{2} \mathbf{y}^{\top} \mathbf{y}\right)+\left(\frac{1}{2} \mathbf{x}^{\top} \mathbf{R} \mathbf{x}+\sum_{n} \lambda_{n} \phi_{n}\left(\mathbf{x}_{n} ; n\right)\right)
$$

where \mathbf{R} is a + ve definite diagonal matrix

- For ϕ_{n} being logarithmic penalty, the second term is convex if

$$
\begin{equation*}
0<a_{n}<\frac{r_{n}}{\lambda_{n}} \tag{1}
\end{equation*}
$$

where $r_{n}=\mathbf{R}(n, n)$. So, we need to find \mathbf{R} which satisfies (1).

- How to find \mathbf{R}
- Larger r_{n} synonymous with more non-convex ϕ_{n} and therefore more sparsity inducing.
- \mathbf{R} found via optimization problem:

$$
\begin{aligned}
& \underset{r_{1}, r_{2} \ldots r_{n}}{\arg \max } \sum_{n=0}^{N-1} r_{n} \\
& \text { such that } r_{n} \geq \lambda_{\min }\left(\mathbf{H}^{T} \mathbf{H}\right) \text { and } \mathbf{H}^{T} \mathbf{H}-\mathbf{R} \geq 0
\end{aligned}
$$

Near Optimal Sensor Placement for Linear Inverse Problems.
Authors: Juri Raniieri and Amina Chebira and Martin Vetterli

- Problem Statement:
- Linear inverse problem: Find \mathbf{x} from $\mathbf{y}=\Psi \mathbf{x}$.
- There are N measurements from different sensors, $\mathbf{y} \in \mathbb{R}^{N}$.
- Which are best L meaurements out of N total meaurements? (MSE wise)
- Combinatorial complexity.
- Contributions:
- Fast greedy algorithm to pick best L measurements.
- Near optimality of greedy algorithm shown. (optimization in terms of MSE)
- Main Idea: Use Frame potential(FP) used as cost function.
- What is frame potential
- For $G \subset(1,2 \ldots N)$ and $|G|=L, F P\left(\Psi_{G}\right)=\sum_{i, j \in G}\left|<\psi_{i}, \psi_{j}>\right|^{2}$ where ψ_{i} and ψ_{j} are rows of submatrix ψ_{G}.
- FP is a measure of orthogonality of rows. (Lower FP \Rightarrow tighter frame).
- Why frame potential?
- MSE based cost functions suffer from local minimas.
- It is shown that $F P\left(\Psi_{G}\right) \rightarrow F P_{U N T F}$ implies $\operatorname{MSE}\left(\Psi_{G}\right) \rightarrow M_{\text {UNTF }}$.
- FP is easy to compute.
- FP is shown to be submodular in G and greedy algorithms are known to be optimal in optimization of submodular functions.
- FrameSense - a greedy algorithm to pick best L out of N measurements
- In each iteration, remove the row that maximizes
$F P\left(\Psi_{S}\right)=F P(\Psi)-F P\left(\Psi_{N \backslash S}\right)$.
- S = set of unwanted rows/measurements and $N=(1,2, \ldots N)$

Distributed Sparse Recursive Least-Squares Over Networks.

Authors: Zhaoting Liu, Ying Liu and Chunguang Li

- Problem Statement:
- Distributed online learning of sparse vector
- Measurement model at time instant i.

$$
d_{n, i}=\mathbf{u}_{n, i} \mathbf{w}+\eta_{n, i}
$$

- $\mathbf{w} \in \mathbb{R}^{M}$ is sparse, $d_{n, i}$ is measurement taken at node $n \eta_{n, i} \sim \mathcal{N}\left(0, \sigma_{n}^{2}\right)$.
- Contributions: Distributed RLS algorithm for learning w.
- Main ideas:
- Each node n minimizes local cost function

$$
\begin{equation*}
\psi_{n, i}=\arg \max _{\mathbf{w}} \sum_{l \in N_{n}} \sum_{j=1}^{i} \mu^{i-j} \log p\left(d_{l, i} / \mathbf{w}\right)-\gamma J(\mathbf{w}) \tag{2}
\end{equation*}
$$

- $J(\mathbf{w})$ is sparsity inducing penalty term.
- Local cost function (2) simplifies to:

$$
\psi_{n, i}=\underset{\mathbf{w}}{\arg \min } \sum_{l \in N_{n}} \frac{\left(\mathbf{d}_{l, i}-\mathbf{U}_{l, i} \mathbf{w}\right)^{T} \Lambda_{i}\left(\mathbf{d}_{l, i}-\mathbf{U}_{l, i} \mathbf{w}\right)}{2 \sigma_{l}^{2}}+\gamma J(\mathbf{w})
$$

where $\mathbf{d}_{l, i}=\left(d_{n, 1}, \ldots d_{n, i}\right)$ and $\mathbf{U}_{l, i}=\operatorname{col}\left(\mathbf{u}_{n, 1}, \ldots \mathbf{u}_{n, i}\right)$ and $\Lambda_{i}=\operatorname{diag}\left(\mu_{i-1}, \mu_{i-2} \ldots 1\right)$

- As i increases, dimensions of $\mathbf{d}_{l, i}, \mathbf{U}_{l, i}, \Lambda_{i}$ increase. So RLS type algorithm is needed!
- Main ideas (contd):
- Combined measurement model for i time instances at node n :

$$
\begin{equation*}
\mathbf{d}_{n, i}=\mathbf{U}_{n, i} \mathbf{w}+\boldsymbol{\xi}_{n, i} \tag{3}
\end{equation*}
$$

- Trick: Decompose noise vector $\boldsymbol{\xi}_{n, i}$ into two parts:

$$
\begin{equation*}
\boldsymbol{\xi}_{n, i}=\alpha_{n} \mathbf{U}_{n, i} \boldsymbol{\mu}_{n, i}+\Lambda_{i}^{\frac{1}{2}} \boldsymbol{\nu}_{n, i} \tag{4}
\end{equation*}
$$

where $\nu_{n, i} \sim \mathcal{N}\left(0, \sigma_{n}^{2} \mathbf{I}-\alpha_{n}^{2} \Lambda_{i}^{\frac{1}{2}} \mathbf{U}_{n, i} \mathbf{U}_{n, i}^{T} \Lambda_{i}^{\frac{1}{2}}\right)$ and $\mu_{n, i}=\mathcal{N}(0, \mathbf{I})$.

- Using (3) and (4), we can write

$$
\begin{align*}
& \mathbf{z}_{n, i}=\mathbf{w}+\alpha_{n} \boldsymbol{\mu}_{n, i} \tag{5}\\
& \mathbf{d}_{n, i}=\mathbf{U}_{n, i} \mathbf{z}_{n, i}+\Lambda_{i}^{\frac{1}{2}} \boldsymbol{\nu}_{n, i} \tag{6}
\end{align*}
$$

- Using (5) and (6), we can now formulate EM algorithm !
- E-step:

$$
Q\left(\mathbf{w}, \hat{\mathbf{w}}_{n, i-1}\right)=E_{z}\left[\log p\left(\mathbf{d}_{l, i}, \mathbf{z}_{l, i} / \mathbf{w}\right) \mid \mathbf{d}_{l, i}, \hat{\mathbf{w}}_{n, i-1}\right]
$$

- modified M-step:

$$
\arg \max _{\mathbf{w}} \sum_{l \in N_{n}} Q_{l}\left(\mathbf{w}, \hat{\mathbf{w}}_{n, i-1}\right)-\gamma J(\mathbf{w}) .
$$

Decentralized Dynamic Optimization Through the Alternating Direction Method of Multipliers

Authors: Qing Ling and Alejandro Ribeiro

- Problem Statement:
- Dynamic optimization problem with separable cost function @ time instant k :

$$
\min _{\mathbf{x}} \sum_{i=1}^{L} f_{i}^{k}(\mathbf{x})
$$

where $\mathbf{x} \in \mathbb{R}^{p}$.

- Can be formulated as a decentralized consensus optimization problem, given by

$$
\min _{\mathbf{x}_{1}, \mathbf{x}_{2} \ldots \mathbf{x}_{L}} \sum_{i=1}^{n} f_{i}^{k}\left(\mathbf{x}_{i}\right) \quad \text { such that } \mathbf{x}_{i}=\mathbf{x}_{j} \forall i, j \in(1,2 \ldots L)
$$

- Need a decentralized algorithm whose iterations consider same time scale as the evolution of the functions $f_{i}^{k}($.$) .$
- Main Results:
- Decentralized ADMM suggested for above problem (run single ADMM iteration in each time instant).
- In steady state, bounds on tracking error provided.
- Steady state tracking error and decay of primal gap before reaching steady state depends on:

1. Condition number of underlying graph
2. Condition number of objective function of primal problem
3. $\max _{k}\left\|\mathbf{x}_{k}^{*}-\mathbf{x}_{k-1}^{*}\right\|_{2}$
4. $\max _{k}\left\|\nabla f_{k}\left(\mathbf{x}_{k}^{*}\right)-\nabla f_{k-1}\left(\mathbf{x}_{k-1}^{*}\right)\right\|_{2}$

Interesting papers...

- ℓ_{q} Sparsity penalized Linear Regression With Cyclic Descent
- Estimation for Linear Model With Uncertain Covariance Matrices
- On Kronecker and Linearly Structured Covariance Matrix Estimation
- Detection of Spatially Correlated Time Series From a Network of Sensor Arrays
- A Factor Graph Approach to Joint OFDM Channel Estimation and Decoding in Impulsive Noise Environments
- Joint Power and Antenna Selection Optimization in Large Cloud Radio Access Networks

Thank You !!!

