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Compressive Shift Retreival
I Problem Statement:

I Cyclic shift retrieval problem
I y is related to x via a s- cyclic shift i.e., y = Dsx
I Want to recover unknown cyclic shift s, from compressive measurements

z = Ay and v = Ax, with A = m × n matrix (m ≤ n)

I Main results:
I X = matrix with columns as cyclic shifted versions of x
I Ideally, to recover s, we would like to solve

min
q∈{0,1}n

||Ay− AXq||22 s.t. ||q||0 = 1 (1)

I For noiseless case, if measurement matrix A satisfies the following
conditions:

1. AHDs = DsAHA
2. ∃α ∈ R, αAAH = I
3. all columns of AX are different

then arg max
s

Re < z, ADsAHv > recovers the true shift. Perfect

recovery if AHA and Ds commute.
I Partial Fourier matrices satisfy conditions (1), (2) and (3)
I For noisy case, z̃ = z + ez and ṽ = v + ev , perfect recovery if `2 norm

difference between any two columns of AX̃ is greater than (||ez ||2 + ||ev ||2)
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Online Algorithm for Separating Sparse and Low
-Dimensional Signal Sequences From Their Sum

I Problem Statement:
I Online algorithm for recovering sequence of sparse vectors St and dense

vectors Lt from their sum Mt = St + Lt
I Additional structure across time:

1. For sparse St , few new indices are added (few existing ones drop
off) at each time epoch.

2. For dense Lt , we have Lt = Pt at , Pt is the slow time varying basis
matrix with time evolution given by

Pj = [(Pj−1R\Pj,old ),Pj,new ]

I Main steps of online algorithm (PRAC-REPRO-CS):
1. Perpendicular projection: yt = Φt Mt , where Φt = (I− Pt PT

t )
2. Sparse recovery of St : assume yt = Φt St + Φt Lt

min
x
λ||xT ||1 + ||xT C ||1 s.t. ||yt − Φt x||2 ≤ ε, T = supp(Ŝt−1)

3. Recover Lt : L̂t = Mt − Ŝt

4. Update basis matrix Pt :
I add new (drop old) basis vectors obtained from incremental SVD of

latest batch of estimates L̂t .
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Sparse Recovery of Streaming Signals Using `1−
Homotopy (1/2)

I Problem Statement:
I Considers streaming data i.e, signal changes over time and, it is measured

and reconstructed sequenctially over small intervals.
I Signal measurement and reconstruction windows can be overlapping in

time.

I Two signal models considered
1. Streaming signal with Lapped Orthogonal Basis (shown above)
2. Streaming signal with Linear Dynamical Model, i.e., (with

non-overlapping measurement window)

xt+1 = Ft xt + ft



Sparse Recovery of Streaming Signals Using `1−
Homotopy (2/2)

I Streaming signal with Lapped Orthogonal Basis
I

min
α

1
2
||ȳ− Φ̄Ψ̄α||2 + ||Wα||1

where wi = τ
β|α̂i |+1 and, α̂ is the signal estimate from previous streaming

iteration.

I Streaming signal with Linear Dynamic Model
I

min
α

1
2
||ȳ− Φ̄Ψ̄α||2 + ||Wα||1 +

λ

2
||F̄prev Ψ̄prev α̂− Ψ̄α||22
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Likelihood Estimators for Dependent Samples and
Their Application to Order Detection (1/2)

I Problem Statement:
I Estimate the dimension of signal subspace given data x(t), t = 0, 1, 2....T ,

assuming
x(t) = Ax(t) + (t)

I If x(1), x(2) . . . x(T ) are independent, MDL gives asymptotically efficient
estimator of model order.

I In Minimum Description Length (MDL), we try to identify a modelM which
minimizes

− log p(x1, . . . xT |M)+C(T )·( params inM)+( bits encoding extra structure inM)

I If x(1), x(2) . . . x(T ) are NOT independent, problem becomes non-trivial
as joint PDF (Likelihood) is not easy to obtain.



Likelihood Estimators for Dependent Samples and
Their Application to Order Detection (2/2)

I Solution:
I First whiten the data Y = UT X
I Assume uncorrelated yi to be stationary and having finite memory of

length Ki .
I Memory length Ki obtaining by finding the minimum downsampling rate K

which makes the downsampled sequence i.i.d.
I Derive approximate log-likelihood L(X).

L(X) = −
1
T

log P(X) = −
1
T

N∑
i=1

log P(yi ) =
N∑

i=1

1
2

log
|Ĉi(Ki )

|

|Ĉi(Ki−1)|

I − 1
T log P(yi ) seen as entropy rate hi of i th component.

I Proposes generalized version of MDL criterion in terms of entropy rate
terms

min
M

 M∑
i=1

log hi + (N −M)logh̄ + C(T ) · (no. of model parameters)


Where the model parameters are {h1, . . . hM , h̄,U}



Other Interesting Papers:

I Towards the Asymptotic Sum Capacity of the MIMO Cellular Two-Way Relay
Channel

I Relabeling and Summarizing Posterior Distributions in Signal Decomposition
Problems When the Number of Components is Unknown

I Multitask Diffusion Adaptation Over Networks

I An MGF-Based Unified Framework to Determine the Joint Statistics of Partial
Sums of Ordered i.n.d. Random Variables
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