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Compressive Shift Retreival

> Problem Statement:
» Cyclic shift retrieval problem
> vy is related to x via a s- cyclic shift i.e., y = Dx
» Want to recover unknown cyclic shift s, from compressive measurements
z = Ay and v = Ax, with A = m x nmatrix (m < n)

» Main results:

» X = matrix with columns as cyclic shifted versions of x
> Ideally, to recover s, we would like to solve

qerﬂ)iﬂ}n”Ay_ AXq|l} st lallo =1 M
» For noiseless case, if measurement matrix A satisfies the following

conditions:

1. AFDs = DSAFA

2. Ja € R,aAAF =1

3. all columns of AX are different
then arg max Re < z, ADSA"v > recovers the true shift. Perfect

s

recovery if A" A and DS commute.

» Partial Fourier matrices satisfy conditions (1), (2) and (3)

» For noisy case, Z =z + ez and V = v + e, perfect recovery if £o norm
difference between any two columns of AX is greater than (||ez||2 + ||ev||2)
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Online Algorithm for Separating Sparse and Low
-Dimensional Signal Sequences From Their Sum

> Problem Statement:

» Online algorithm for recovering sequence of sparse vectors S; and dense
vectors L; from their sum M; = S; + L;

> Additional structure across time:

1. For sparse S;, few new indices are added (few existing ones drop
off) at each time epoch.

2. Fordense L;, we have L; = P:a;, P; is the slow time varying basis
matrix with time evolution given by

P; = [(P,—1R\P;} o), P} new]

> Main steps of online algorithm (PRAC-REPRO-CS):
1. Perpendicular projection: y; = ®;M;, where &; = (I — P;P])
2. Sparse recovery of S;: assume y; = &Sy + ¢l

min Alxr{ls +[[Xrellt st [yt = ®eX|l2 <e, T= supp(Si—1)

3. Recover Ly: [y = M; — &
4. Update basis matrix P;:
> add new (drop old) basis vectors obtained from incremental SVD of
latest batch of estimates L;.
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Sparse Recovery of Streaming Signals Using /1 —
Homotopy (1/2)

> Problem Statement:
» Considers streaming data i.e, signal changes over time and, it is measured
and reconstructed sequenctially over small intervals.
» Signal measurement and reconstruction windows can be overlapping in

time.
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» Two signal models considered
1. Streaming signal with Lapped Orthogonal Basis (shown above)
2. Streaming signal with Linear Dynamical Model, i.e., (with
non-overlapping measurement window)

X1 = FeXe + 1



Sparse Recovery of Streaming Signals Using /1 —
Homotopy (2/2)

> Streaming signal with Lapped Orthogonal Basis
>

N IR
min S11Y — ®Vallz + [[Wel|;

where w; =
iteration.

B\d = and, & is the signal estimate from previous streaming

» Streaming signal with Linear Dynamic Model
>

A
mm *Hy dVallp + [[Walls + 5 |Fprev‘~|’prev0< — a3
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Likelihood Estimators for Dependent Samples and
Their Application to Order Detection (1/2)

> Problem Statement:

» Estimate the dimension of signal subspace given data x(t),t =0,1,2....T,

assuming
x(t) = Ax(t) + (1)

> Ifx(1),x(2)...x(T) are independent, MDL gives asymptotically efficient
estimator of model order.

> In Minimum Description Length (MDL), we try to identify a model M which
minimizes

—logp(x1,...x7|M)+C(T)-( params in M)+( bits encoding extra structure in M

> Ifx(1),x(2)...x(T) are NOT independent, problem becomes non-trivial
as joint PDF (Likelihood) is not easy to obtain.



Likelihood Estimators for Dependent Samples and
Their Application to Order Detection (2/2)

»> Solution:

>
>

>

>

First whiten the data Y = U7X

Assume uncorrelated y; to be stationary and having finite memory of
length K;.

Memory length K; obtaining by finding the minimum downsampling rate K
which makes the downsampled sequence i.i.d.

Derive approximate log-likelihood £(X).

£(X) = ——IogP X) = ——ZlogP(y, _Z—Iog%
i=1 i(Ki—1)

—1? log P(y;) seen as entropy rate h; of ith component.
Proposes generalized version of MDL criterion in terms of entropy rate
terms

M
mlvi,n Z log hj + (N — M)logh + C(T) - (no. of model parameters)
i=1

Where the model parameters are {hy, ... hy, h, U}



Other Interesting Papers:

» Towards the Asymptotic Sum Capacity of the MIMO Cellular Two-Way Relay
Channel

> Relabeling and Summarizing Posterior Distributions in Signal Decomposition
Problems When the Number of Components is Unknown

» Multitask Diffusion Adaptation Over Networks

» An MGF-Based Unified Framework to Determine the Joint Statistics of Partial
Sums of Ordered i.n.d. Random Variables
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