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Generalized Interference Alignment - Part 1:
Theoretical Framework Authors: Lianzhong Ruan, Vincent Lau, Moe Win

I Generalized interference alignment (GIA) problem considers a very general
setup comprising multiple transmitters, recievers, legitimate jammers and
eavesdroppers.

I Determine feasibility conditions for interference alignment
I Design of transreceivers (precoder and decoder matrices)

I System model: Received signal at receiver-k :
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I GIA transceiver design problem: Design {U(`)

k ,Vj}’s, such that
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Feasibily constraints in GIA are nonlinear and non-convex.
I Feasibility of transceiver design problem ≡ algebraic independence of GIA

constraints ≡ full rankness of associated Jacobian.

I Using algebraic geometry concepts, shows that local and global optimums

have no performance gap.



Optimal Joint Detection and Estimation Based on
Decision-Dependent Bayesian Cost
Authors: Shang-Li and Xiaodong Wang, Columbia Univ.

I Joint detection and estimation problem:

H0 : y ∼ f0(y|θ0), with θ0 ∼ π0(θ0)

H1 : y ∼ f1(y|θ1), with θ1 ∼ π1(θ1)

y are observations and θ0/1 are unknown parameters under hypothesis H0/1.

I Goal: Decide between H0 and H1, and at the same time, also estimate the
unknown parameter θ.

I Coupling between the underlying estimation and detection problems:
I The quality of parameter estimate depends upon the correctness of

selected hypothesis
I Estimate of parameter helps in deciding between the competing

hypothesis

I Naive approaches:
I Composite hypothesis testing followed by MAP estimation.
I Neyman-Pearson formulation: Minimize the estimation cost subject to

constraint on detection performance.



Optimal Joint Detection and Estimation Based on
Decision-Dependent Bayesian Cost

I Optimal joint detection and estimation:
A Bayes estimation cost function is proposed:

C(θ̂0, θ̂1, δ) =
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where δ is the detection output.

I If prior on hypothesis is not available:

minimize
θ̂0,θ̂1,δ

C(θ̂0, θ̂1, δ)

subject to P0(δ = 1) ≤ α, P1(δ = 0) ≤ β

I If prior on hypothesis is available:

minimize
θ̂0,θ̂1,δ

C(θ̂0, θ̂1, δ)

subject to P(H0)P0(δ = 1) + P(H1)P1(δ = 0) ≤ γ

I Closed form solution for above problems is provided.

I Extension to multiple hypothesis is also discussed.



Design and Analysis of a Greedy Pursuit for
Distributed Compressed Sensing
Authors: Dennis Sundman, Saikat Chatterjee, Mikael Skoglund, KTH Sweden

I Distributed Compressed Sensing:
Estimate xj from yj in distributed manner.

yj = Aj xj + ej j = 1, 2, . . . , L.

I Mixed support set model: Each xj can be decomposed as: xj = xC
j + zj .

I xC
1 , x

C
2 , . . . , x

C
L share a common sparse support.

I zj is sparse local innovation component.

I Distributed Parallel Pursuit (DIPP): Distributed Co-SAMP type algorithm with
Co-SAMP inspired fusion of common support estimates across nodes.

I Main steps in single iteration of DIPP:
I Generate local support estimate by CoSamp like update
I Exchange current support estimates with neighboring nodes
I Apply majority rule to obtain external support estimate
I Refine local support by using external support estimate, once again using

CoSamp like update

I RIP constant based stable signal recovery guarantees under measurement
noise is provided.



Analytical Derivation of the Inverse Moments of
One-Sided Correlated Gram Matrices With
Aplications
Authors: K. Elkhalil, A. Kammoun, T. Y. Al Naffouri, and M. S Alouini

I Moments of one-sided correlated gram matrices
I Let H be n ×m random matrix with i.i.d zero-mean unit variance complex

Gaussian random entries.
I Let Λ be deterministic PSD matrix with distinct eigenvalues.
I Then, consider the Gram matrix S as

S = H∗ΛH.

I The r th moments µΛ(r) is defined as:
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)
.

I Application-1: BLUE estimation error in (y = Hx + e) problem can be rewritten
in terms of inverse moments.

EH||x̂blue − x||2 = EHtr(H∗Σ−1
noiseH)−1 = mµ

Σ−1
noise

(−1).



Analytical Derivation of the Inverse Moments of
One-Sided Correlated Gram Matrices With
Aplications
Authors: K. Elkhalil, A. Kammoun, T. Y. Al Naffouri, and M. S Alouini

I Application-2: Average estimation error in LMMSE for (y = Hx + e) problem:

EH||x̂lmmse − x||2 = EHtr(Σ−1
x + H∗Σ−1

noiseH)−1.

I High SNR regime
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where l ≤ p − 1 with p = min(m, n −m).

I Low SNR regime

EH{‖xlmmse − x‖2} = m
∞∑

k=0

(−1)k σ2k+2
x µΣnoise(k).



Analytical Derivation of the Inverse Moments of
One-Sided Correlated Gram Matrices With
Aplications
Authors: K. Elkhalil, A. Kammoun, T. Y. Al Naffouri, and M. S Alouini

I Application-3: Accuracy of sample covariance matrix Ŝ:

Loss = E||R1/2Ŝ−1R1/2 − I||2F

I Once again, the Loss can be written in terms of inverse moments of sample
covariance matrix Ŝ.

I Stieltjes Transform: For a Hermitian matrix A, its Stieltjes transform is given by:

mA (z) ,
∫

1
λ− z

dF A(λ) =
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tr (A− zIm)−1 .

where F A(.) is empirical spectral distribution of A.

I Main result: The r th inverse moment can be written in terms of derivative of the
Stieltjes transform.



Other Interesting Papers:

I Sequence Set Design With Good Correlation Properties Via
Majorization-Minimization

I A General Design Framework for MIMO Wireless Energy Transfer With Limited
Feedback

I Massive MIMO for Decentralized Estimation of a Correlated Source

I Bayes-Optimal Joint Channel-and-Data Estimation for Massive MIMO With
Low-Precision ADCs

I Uplink Downlink Rate Balancing and Throughput Scaling in FDD Massive MIMO
Systems

I Traffic Aware Resource Allocation Schemes for Multi-Cell MIMO-OFDM Systems

I Decentralized Sum Rate Maximization With QoS Constraints for Interfering
Broadcast Channel Via Successive Convex Approximation

I SINR Constrained Beamforming for a MIMO Multi-User Downlink System:
Algorithms and Convergence Analysis

I Robust Pilot Decontamination Based on Joint Angle and Power Domain
Discrimination


