Journal Watch:

IEEE Transanctions on Signal Processing 15 February 2015

Saurabh Khanna,
Signal Processing for Communication, ECE, IISc

Compressive Two Dimensional Harmonic Retrieval via Atomic Norm Minimization.

Authors: Yuejie Chi and Yuxin Chen
Affiliations: Ohio State University and Stanford University

Compressive Two Dimensional Harmonic Retrieval via Atomic Norm Minimization

- Problem Statement:
- Recovery of 2D signal \mathbf{x} which is (approximately) sparse under 2D Fourier Transform from its compressive measurements \mathbf{y}

$$
\mathbf{x}\left(k_{1}, k_{2}\right)=\frac{1}{4 M+1} \sum_{i=1}^{r} d_{i} e^{j 2 \pi\left(f_{i, 1} k_{1}+f_{i}, 2 k_{2}\right)}
$$

where $\left[f_{i, 1}, f_{i, 2}\right]$ are distinct 2D frequency pairs

- We can write $\mathbf{x}=(\mathbf{F} \otimes \mathbf{F}) \mathbf{d}$, where \mathbf{d} is approximately sparse, \mathbf{F} being the DFT matrix
- Major Issue: If true frequencies do not coincide with the hypothesized grid, the performance can degrade considerably
- Main results:
- Suggests Atomic norm minimization for 2D harmonic retrieval, to resolve grid mismatch issue
- Atomic norm: $\|\mathbf{x}\|_{\mathcal{A}}=\inf _{f_{i} \in[0,1] \times[0,1], d_{i} \in \mathbb{C}}\left\{\sum_{i}\left|d_{i}\right| \mid \mathbf{x}=\sum_{1} d_{j} \mathbf{c}\left(f_{i}\right)\right\}$
- Proposes to solve the following as an SDP:

$$
\min _{\mathbf{x}}\|\mathbf{x}\|_{\mathcal{A}} \text { s.t. } \mathbf{y}=\boldsymbol{\Phi} \mathbf{x}
$$

- Under assumptions of minimum separation between f_{i} 's, true \mathbf{x} can be recovered provided sample complexity exceeds $\mathcal{O}(r \log r \log n)$

Bayesian Hypothesis Test Using Nonparametric Belief Propagation for Noisy Sparse Recovery.

Authors: Jaewook Kang, Heung-No Lee and Kiseon Kim
Affiliations: Gwangju Institute of Science and Technology, Republic of Korea

Bayesian Hypothesis Test Using Nonparametric Belief Propagation for Noisy Sparse Recovery

- Problem Statement:
- Noisy Sparse Recovery: Recover sparse vector \mathbf{x} from noisy compressive measurements \mathbf{y}

$$
\mathbf{y}=\Phi \mathbf{x}+\mathbf{w}
$$

- Φ is LDPC like measurement matrix
- Goal: Want to do robust support detection
- Main results:
- Proposes BHT-BP algorithm.
- First detect sparse support by combination of BP and BHT, then the non zero coefficients are obtained through LMMSE estimation
- Instead of parameterized PDF's, uniformly sampled PDF is used as messages between the variable and factor nodes (non-parametric approach is adopted)
- Once BP has converged, the algorithm performs Binary Hypothesis Test for each index to detect a " 0 " or "nonzero"... Test metric is also generated using sampled distributions.
- Shown to outperform CS-BP algorithm

Compressive Phase Retrieval via Generalized Approximate Message Passing.

Authors: Philip Schniter and Sundeep Rangan
Affiliations: Ohio State University and New York University

Compressive Phase Retrieval via Generalized Approximate Message Passing

- Problem Statement:
- Phase reteival problem: Recover a sparse vector \mathbf{x} from the magnitudes of noisy compressive linear measurements y

$$
\mathbf{y}=\Phi \mathbf{x}+\mathbf{w}
$$

- Why? Often easier to build detectors that measure intensity rather than the phase
- Main results:
- Proposes to use GAMP framework to estimating the posterior $p(\mathbf{x} \mid \mathbf{y})$
- Bernoulli Gaussian signal prior is imposed on the unknown signal vector \mathbf{x}
- $p\left(\mathbf{y}_{m} \mid \mathbf{x}\right)$ turns out to be Rician as $\mathbf{y}_{m}=\left|\phi_{m}^{T} \mathbf{x}+\mathbf{w}\right|$
- Measurement noise variance estimated through EM algo, needed posteriors coming from GAMP framework
- Shown to outperform GESPAR and CPRL algorithms

A State Space Approach to Dynamic Nonnegative Matrix

 Factorization.Authors: Nasser Mohammadiha, Paris Smaragdis, Ghazaleh Panahandeh and Simon Doclo

Affiliations: University of Oldenberg, Germany and UIUC and KTH

A State Space Approach to Dynamic Nonnegative Matrix Factorization

- Non negative matrix factorization (NMF):
- For given non negative $m \times n$ sized data matrix \mathbf{X}, find the factorization WH such that $\mathbf{X} \approx \mathbf{W H}$
- W is low rank, non negative basis matrix of size $m \times r$
- \mathbf{H} is low rank, non negative coefficient matrix of size $r \times n$
- In deterministic NMF, a cost function measuring approximation error is minimized under non-negativity constraint on \mathbf{W} and \mathbf{H}
- Main results:
- Proposes dynamic NMF algorithm (D-NMF) (probabilistic approach)
- Columns of \mathbf{H} are assumed to evolve acc. to $\mathrm{J}^{\text {th }}$ order N -VAR model:

$$
f\left(\mathbf{h}_{t} \mid \mathbf{A}, \mathbf{h}_{t-1} \ldots \mathbf{h}_{t-j}\right)=\mathcal{N}\left(\mathbf{h}_{t} ; 0, \sum_{j=1}^{J} \mathbf{A}_{j} \mathbf{h}_{t-j}\right)
$$

- Measurement model modelled as:

$$
f\left(\mathbf{x}_{t} \mid \mathbf{W}, \mathbf{h}_{t}\right)=\text { multinomial }\left(\mathbf{x}_{t} ; \sum_{k=1}^{m} x_{k, t}, \mathbf{W h}_{t}\right)
$$

- Maximization of a Q function is considered: $Q=\log p(\mathbf{X}, \mathbf{H} \mid \mathbf{W}, \mathbf{A})$
- EM algorithm is used to obtain MAP estimate of hidden variable \mathbf{H} and ML estimates of \mathbf{W} and \mathbf{A}

Other Interesting Papers:

- Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation
- Asynchronous Adaptation and Learning Over Networks (Part-1/2/3)
- Optimal Stochastic Coordinated Beamforming for Wireless Cooperative Networks With CSI Uncertainity
- Dictionary Learning over Distributed Models
- Deterministic Constructions of Binary Measurement Matrices From Finite Geometry

