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Compressive Two Dimensional Harmonic Retrieval
via Atomic Norm Minimization

I Problem Statement:
I Recovery of 2D signal x which is (approximately) sparse under 2D Fourier

Transform from its compressive measurements y

x(k1, k2) =
1

4M + 1

r∑
i=1

di e
j2π(fi,1k1+fi,2k2)

where [fi,1, fi,2] are distinct 2D frequency pairs
I We can write x = (F⊗ F)d, where d is approximately sparse, F being the

DFT matrix
I Major Issue: If true frequencies do not coincide with the hypothesized

grid, the performance can degrade considerably
I Main results:

I Suggests Atomic norm minimization for 2D harmonic retrieval, to resolve
grid mismatch issue

I Atomic norm: ||x||A = inf
fi∈[0,1]x [0,1],di∈C

{
∑

i |di | | x =
∑

1 di c(fi )}

I Proposes to solve the following as an SDP:

min
x
||x||A s.t . y = Φx

I Under assumptions of minimum separation between fi ’s, true x can be
recovered provided sample complexity exceeds O(r log r log n)



Bayesian Hypothesis Test Using Nonparametric Belief
Propagation for Noisy Sparse Recovery.
Authors: Jaewook Kang, Heung-No Lee and Kiseon Kim

Affiliations: Gwangju Institute of Science and Technology, Republic of Korea



Bayesian Hypothesis Test Using Nonparametric
Belief Propagation for Noisy Sparse Recovery

I Problem Statement:
I Noisy Sparse Recovery: Recover sparse vector x from noisy compressive

measurements y
y = Φx + w

I Φ is LDPC like measurement matrix
I Goal: Want to do robust support detection

I Main results:
I Proposes BHT-BP algorithm.
I First detect sparse support by combination of BP and BHT, then the non

zero coefficients are obtained through LMMSE estimation
I Instead of parameterized PDF’s, uniformly sampled PDF is used as

messages between the variable and factor nodes (non-parametric
approach is adopted)

I Once BP has converged, the algorithm performs Binary Hypothesis Test
for each index to detect a ”0” or ”nonzero”... Test metric is also generated
using sampled distributions.

I Shown to outperform CS-BP algorithm
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Compressive Phase Retrieval via Generalized
Approximate Message Passing

I Problem Statement:
I Phase reteival problem: Recover a sparse vector x from the magnitudes of

noisy compressive linear measurements y

y = Φx + w

I Why? Often easier to build detectors that measure intensity rather than the
phase

I Main results:
I Proposes to use GAMP framework to estimating the posterior p(x|y)
I Bernoulli Gaussian signal prior is imposed on the unknown signal vector x
I p(ym|x) turns out to be Rician as ym = |φT

mx + w|
I Measurement noise variance estimated through EM algo, needed

posteriors coming from GAMP framework
I Shown to outperform GESPAR and CPRL algorithms
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A State Space Approach to Dynamic Nonnegative
Matrix Factorization

I Non negative matrix factorization (NMF):
I For given non negative m × n sized data matrix X, find the factorization

WH such that X ≈ WH
I W is low rank, non negative basis matrix of size m × r
I H is low rank, non negative coefficient matrix of size r × n
I In deterministic NMF, a cost function measuring approximation error is

minimized under non-negativity constraint on W and H
I Main results:

I Proposes dynamic NMF algorithm (D-NMF) (probabilistic approach)
I Columns of H are assumed to evolve acc. to J thorder N-VAR model:

f (ht |A,ht−1 . . .ht−J ) = N (ht ; 0,
J∑

j=1

Aj ht−j )

I Measurement model modelled as:

f (xt |W,ht ) = multinomial(xt ;
m∑

k=1

xk,t ,Wht )

I Maximization of a Q function is considered: Q = log p(X,H|W,A)

I EM algorithm is used to obtain MAP estimate of hidden variable H and ML
estimates of W and A



Other Interesting Papers:

I Compressive Parameter Estimation for Sparse Translation-Invariant Signals
Using Polar Interpolation

I Asynchronous Adaptation and Learning Over Networks (Part-1/2/3)

I Optimal Stochastic Coordinated Beamforming for Wireless Cooperative
Networks With CSI Uncertainity

I Dictionary Learning over Distributed Models

I Deterministic Constructions of Binary Measurement Matrices From Finite
Geometry


