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An Empirical Bayes Approach to Recovering
Linearly Constrained Non-Negative Sparse Signals

I Problem Statement:
I Non-Negative linearly constrained sparse signal recovery: Recover sparse

x from y, where
y = Ax + w

and, xi ≥ 0, and x statisfies Bx = c
I Conventional approach: `1 penalized constrained NN least squares

problem:

x̂ = arg min
x�0

1
2
||y− Ax||22 + λ||x||1 s.t. Bx = c

I Main results:
I Proposes three variants of Generalized Approximate Message Passing

Algorithms (GAMP) based algorithms
I Augmented measurement model

[y; c] = [A; B]x + [w; 0]

fȳ|x(ȳm|x) = N (AT
mx, σ2

w I) m = 1 . . .M

δ(ym − BT
mx) m = M + 1 . . .M + P



An Empirical Bayes Approach to Recovering
Linearly Constrained Non-Negative Sparse Signals

I Main results: (contd..)

1. NN Least Squares GAMP
Improper non negative prior: fx(x) = 1, x ≥ 0, 0 o.w .
Equivalent unconstrained optimization:

arg min
x

1
2
||y− Ax||22 − log IBx=c −

N∑
n=1

log Ixn≥0

2. NN LASSO GAMP
Non negative prior: fx(x) = γexp(−γx), x ≥ 0, 0 o.w .
Equivalent constrained optimization:
arg min

x≥0

1
2ψ ||y− Ax||22 + γ||x||1 s.t. Bx = c

3. NN Gaussian Mixture GAMP

Non negative prior: fx(x) = (1− τ)δ(x) + τ
L∑

l=1

wlN+(x ; θl , φl ), 0 o.w .
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A Measurement Rate-MSE Tradeoff for
Compressive Sensing Through Partial Support
Recovery

I Problem Statement:
I Find relation between MSE and measurement rate for k−sparse signal

recovery problem
I Measurement rate r = lim inf

n→∞

mn

log n
I Asymptotic setting: n,m→∞, but k is kept fixed
I Partial support recovery: (γ support set Sγ )∑

i∈Sγ

x2
i ≥ γ||x||22 (1)

I Main results:
1. Partial support set recovery: For given noise variance, γ and the non-zero

coefficients w ∈ Rk , an expression for measurement rate r is found, such
that Perr (support recovery) ≤ o(1/m)

2. MSE: Given some T ⊆ S, it is possible to acheive

MSE(T ) = ||xT C ||22 + O(
1
m

)

3. Measurement Rate vs MSE tradeoff: Staircase like acheivable region
found (has staircase like shape)
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A Variational Bayes Framework for Sparse
Adaptive Estimation

I Problem Statement:
I Estimate and track w(n) ∈ RN in time by observing a stream of sequential

data y(n)

y(n) = xT (n)w(n) + ε(n)

where, x(n) is a known N × 1 regression vectors
I w(n) is known to be sparse
I Seeking Bayesian motivated recursive least squares type solution

I Main results:
I Impose prior on w(n) ∼ N (0, β−1A) where A = diag(α1, α2 . . . αN )

I Generalized Inverse Gaussian prior assumed on αi
I Mean field variational Bayesian inference used to obtain update equations for

w, α, β
I For batch processing, derives update equation when effective prior on w(n) is

taken to be Student-t and Laplacian
I For recursive processing, at each iteration n, a regularized LS cost function

τLS−R(n) is minimized

τLS−R(n) = ||Λ
1
2 (n) (y(n)− X(n)ŵ(n)) ||22 + ŵT (n)A(n − 1)ŵ(n)

I Nice trick to obtain iterative scheme for weight update...(discuss)
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Convex Optimization Approaches for Blind Sensor
Calibration Using Sparsity

I Problem Statement:

I Measurement model at sensor l

yi,l = di ejθi mT
i xl i = 1 . . .M, di ≥ 0, θi ∈ [0, 2π)

I Three scenarios considered
1. Amplitude calibration
2. Phase calibration
3. Complete calibration



Convex Optimization Approaches for Blind Sensor
Calibration Using Sparsity

I Amplitude calibration
I Rearrange gain terms to rewrite meas model as:

yi,lτ i = mT
i xl

I Assume
∑M

i τ i = 1 to remove gain ambiguity between signal and
distortion term

I Phase calibration
I Note that gi,k,l = yi,k y∗i,l = mT

i xk xH
l mi

I Try to recover joint matrix X = xxH , where x = (xH
1 . . . x

H
L )H

I A convex optimization problem is formulated to find X

arg min
Z
||Z||1

subject to Z � 0

gi,k,l = yi,k y∗i,l = mT
i xk xH

l mi

I Recover x from X (nice trick here!)

I Complete calibration
I A combination of above two approaches
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