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Prior Support Knowledge-Aided Sparse Bayesian
Learning with Partly Errorneous Support
Information Authors: Jun Fang, Yanning Shen, Fuwei Li and Hongbin Li

I Problem Statement:
I Sparse signal recovery with partial support information.
I Recover sparse x ∈ Rn from m(< n) measurements y ∈ Rm, where

y = Ax + w

I Prior support information available in the form of index set P ⊂ T , where T
is the true support. P can be slightly erroneous.

I Proposed algorithm
I Modification to SBL to accomodate prior support information P.
I A three layer hierarchical model is proposed

p(x|α) =
n∏

i=1

N (0, α−1
i ) p(α) =

n∏
i=1

Gamma(αi |a, bi )

p(bi ) =

{
Gamma(bi |p, q) i ∈ P

δ(bi − 10−4) i ∈ Pc

}
I Variational Bayesian Inference used to obtain posterior distribution of x

and other hidden variables in the latent model.



MAP Support Detection for Greedy Sparse Signal
Recovery Algorithms in Compressive Sensing
Authors: Namyoon Lee (Univ. of Texas, Austin)

I Problem Statement:
I Recover sparse vector x from compressive linear measurements

y = Ax + w
I MAIN IDEA: Using MAP support detection techniques in greedy

algorithms such as MP, OMP, CoSamp, etc. results in improved
performance (at the cost of more computations)

I MAP support detection technique
I Conventional way is to pick columns of A in a greedy manner which are

maximally correlated with the residual.
I Residual: r =

∑
l∈T\Sk−1

al xl

I For index i , generate correlation metric Z k
i =

aT
n rk−1

||an||2
I Choose index with maximum a posteriori ratio for given observation Z k

i

Λ(Z k
i ) = log

P(i ∈ T |Z k
i )

P(i /∈ T |Z k
i )

I Closed form expression for Λ(Z k
i ) for different source distributions.



Improving M-SBL for Joint Sparse Recovery using
a Subspace Penalty
Authors: Jong Chul Ye, Jong Min Kim and Yoram Bresler, KAIST, Korea

I Recover joint sparse vectors X from L compressive linear measurements
(MMVs) Ym×L = Am×NX + W.

I In M-SBL, we do MAP estimation of X by assuming parameterized prior on X.

p(X;γ) =
L∏

j=1

N (0, Γ), Γ = diagγ

I The prior parameters are found via Type-2 ML estimation, by maximizing

L(γ) = Tr((σ2I + AΓAT )−1YY T ) + N log |σ2 + AΓAT |

I (Wipf, Rao, Natrajan) An alternate interpretation of M-SBL algorithm:

min
X
||Y− AX||2F + σ2gMSBL(X) (Solve for X)

gMSBL(X) = min
γ≥0

Tr(XT Γ−1X) + N log |σ2I + AΓAT | (Solve for γ) (1)

I The first term in (1) behaves like N||γ||0.
I The non-separability of log |σ2I + AΓAT | term is the main reason why MSBL is

able to dodge many local minimizers.
I Looking purely from cost function point of view, can we do better ?
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Improving M-SBL for Joint Sparse Recovery using
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I (Wipf, Rao, Natrajan) An alternate interpretation of M-SBL algorithm:

min
X
||Y− AX||2F + σ2gMSBL(X) (Solve for X)
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I Rank proxy interpretation for log-det term
I As σ2 → 0,

gMSBL(X) ≈ min
γ≥0

N||γ||0 + N · RankProxy(AΓ
1
2 )

I Log-det penalty can be replaced with a better penalty: Rank-Proxy(QT AΓ
1
2 ),

where Q is a basis of noise subspace, i.e. R(Q) = R⊥(Y)

I Why RankProxy(QT AΓ
1
2 ) instead of RankProxy(AΓ

1
2 )?

Theorem
If ||X||0, Y = AX and if A satisfies RIP, then we have:

support(X) = arg min
|I|≥k

rank(QT AI)

I Using Schatten-p norm as rank-proxy leads to performance better than M-SBL.
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Bayesian Hypothesis Testing for Block Sparse
Signal Recovery Authors: Mehdi Korki, Hadi Zayyani and Jingxin Zhang

I Problem statement
I Recover a block sparse x ∈ Rn from m(< n) measurements y ∈ Rm,

where
y = Ax + w

I Blocks are of unequal sizes and with unknown boundaries
I Main contributions

I Proposes Block Bayesian Hypothesis Testing Algorithm (Block-BHTA)
I Assumes Bernoulli Gaussian signal prior:

p(xi ) = pδ(xi ) + (1− p)N (0, σ2
s )

I Transitional probabilities p01 , Pr(xi+1 = 0|xi 6= 0) and
p10 , Pr(xi+1 6= 0|xi = 0) are used to encode block structure.

I In steady state (large n),

Pr(xi = 0) = p =
p10

p01 + p10
Pr(xi = 1) = p =

p01

p01 + p10

I Block start identified at index i if:

p10p(y|xi = 0, xi+1 6= 0) > p00p(y|xi = 0, xi+1 = 0)

I Similar test for identification of block termination



Other Interesting Papers:
I Sparse Multinomial Logistic Regression via Approximate Message Passing,

Evan Byrne and Philip Schniter

I Bayesian Masking: Sparse Bayesian Estimation with Weaker Shrinkage Bias,
Kondo, Hayashi and Maeda

I Recovery of Sparse Positive Signals on the Sphere from Low Resolution
Measurements, Tamir Bendory and Yonina C. Eldar

I SAFFRON: A Fast, Efficient and Robust Framework for Group Testing based on
Sparse Graph Codes, Kangwook Lee, Ramtin Pedarsani and Kannan
Ramachandran

I Bayesian Optimal Approximate Message Passing to Reciver Structured Sparse
Signals, Martin Mayer and Nobert Goertz

I Super-Resolution Sparse MIMO-OFDM Channel Estimation Based on SPatial
and Temporal Correlations, Zaocheng Wang et al.

I A framework for sparse online learning and its applications, Dayong Wang,
Pengchecg Wu, Peilin Zhao, Steven C. H. Hoi

I Type-I and Type-II Bayesian Methods for Sparse Signal Recovery using Scale
Mixtures, Ritwik Giri and Bhaskar D. Rao


