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Prior Support Knowledge-Aided Sparse Bayesian
Learning with Partly Errorneous Support
Information Authors: Jun Fang, Yanning Shen, Fuwei Li and Hongbin Li

» Problem Statement:
» Sparse signal recovery with partial support information.
> Recover sparse x € R” from m(< n) measurements y € R”, where

y=Ax+w

> Prior support information available in the form of index set P C T, where T
is the true support. P can be slightly erroneous.
» Proposed algorithm

» Modification to SBL to accomodate prior support information P.
> A three layer hierarchical model is proposed

p(xja) = [[N (0,0, ") p(er) = [ | Gamma(aya, b))
i=1 i=1
Gamma(bj|p, q) ieP
p(bl) = _4 .
§(bj—107%) ieP°

> Variational Bayesian Inference used to obtain posterior distribution of x
and other hidden variables in the latent model.



MAP Support Detection for Greedy Sparse Signal
Recovery Algorithms in Compressive Sensing
Authors: Namyoon Lee (Univ. of Texas, Austin)

» Problem Statement:

>

>

Recover sparse vector x from compressive linear measurements
y=Ax+w

MAIN IDEA: Using MAP support detection techniques in greedy
algorithms such as MP, OMP, CoSamp, etc. results in improved
performance (at the cost of more computations)

» MAP support detection technique

>

Conventional way is to pick columns of A in a greedy manner which are
maximally correlated with the residual.
Residual: r= > ax
leT\Sk—1
a,frk”
[lanll2
Choose index with maximum a posteriori ratio for given observation Z,.k

For index i, generate correlation metric Z/.k =

P(i € T|ZK)

NED =09 s Tz

Closed form expression for A(Z,k) for different source distributions.



Improving M-SBL for Joint Sparse Recovery using
a Subspace Penalty

Authors: Jong Chul Ye, Jong Min Kim and Yoram Bresler, KAIST, Korea

> Recover joint sparse vectors X from L compressive linear measurements
(MMVS) Yy = A nX + W.
» In M-SBL, we do MAP estimation of X by assuming parameterized prior on X.

L
p(X;y) = [N(O, ), I = diagy
j=1
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able to dodge many local minimizers.
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» Looking purely from cost function point of view, can we do.better ?
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;
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> Log-det penalty can be replaced with a better penalty: Rank—Proxy(QTAr%),
where Q is a basis of noise subspace, i.e. R(Q) = R+(Y)
> Why RankProxy(QTAl'%) instead of F{ankProxy(AF% )?
Theorem

If||1X|lo, Y = AX and if A satisfies RIP, then we have:

support(X) = arg min rank(Q" A))
[1=k

» Using Schatten-p norm as rank-proxy leads to performance better than M-SBL.



Bayesian Hypothesis Testing for Block Sparse
Sig nal Recovery Authors: Mehdi Korki, Hadi Zayyani and Jingxin Zhang

> Problem statement
> Recover a block sparse x € R” from m(< n) measurements 'y € R",
where
y=Ax+w

> Blocks are of unequal sizes and with unknown boundaries

> Main contributions
> Proposes Block Bayesian Hypothesis Testing Algorithm (Block-BHTA)
» Assumes Bernoulli Gaussian signal prior:

p(x;) = ps(x;) + (1 = P)N(0, o)

> Transitional probabilities pp1 £ Pr(x;.1 = 0|x; # 0) and
P10 = Pr(xi41 # 0|x; = 0) are used to encode block structure.
In steady state (large n),

v

__ P
Po1 + P1o

Block start identified at index i if:

Po1

Pr(xi=0)=p P:m

Pr(x; =1) =

v

propP(YIXi = 0, Xi11 # 0) > poop(y|X; = 0, X;11 = 0)

» Similar test for identification of block termination
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