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Gaussian Mixtures Based IRLS for Sparse
Recovery With Quadratic Convergence

Authors: Chiara Ravazzi and Enrico Magli (Polytechnico di Torino, Italy)

» Problem Statement:
» Recover sparse x € R" from m(< n) measurements y € R™, where

y=Ax+w

» lterative support detection and estimation approach.
» A reweighted constrained optimization is considered

min
Teln,ITI<3 xef(v){; Z }

i¢T

where F(y) = {x s.t. ||y — Ax||2 < 6}
» Solve for x, T, « and 8 via Gauss Seidel iterations.
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Recovery With Quadratic Convergence

Authors: Chiara Ravazzi and Enrico Magli (Polytechnico di Torino, Italy)

Algorithm 1: Hard support detection and signal reconstruction

Algorithm 2: Soft support detection and signal reconstruction

Input: Measurements € R”, data matrix 4 € R*®
1:  Initialization: & = gy, g = 35, T® =T,
2: fort=0,1...., 5toplter do

3: Constrained weighted least square minimization:
J)‘; i
200 = are min z ﬁ + Z 0
wEF ) | fer D e

4: Support detection: set threshold § = d(at?, ) > 0

) _ (#41) 1
T {le[n] > 6}

Input: Measurements y C R™, data matrix A C R*
1: Initialization: o{® — ag, 3O — By, 70 € [0,1]"
2: fort=0,1,...,Sloplier do
3: Constrained weighted least square minimization:
. —z® 27 77(”.7:;7
2010 = argmin [Chalr a4 3(:, ) +Z ;(“
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4: Posterior beliefs of the signal coefficients:

Sl — ﬁ(x('“).u(”. j(l))

5: Weights update:

5: Weights update:
At — a(*“’(z(*“’,T““)) altt!) = Q!HI)(_L.H*!)_,,(HI))
,3(t+1; _ ﬂ(H»l)Nr(H»I]_T(t—H) gl = rg(lf‘J(l(Hl)’ ,\.(H‘))
6:  end for 6:  end for
> Above algorithms derived for Bernoulli Gaussian prior
> Quadratic convergence is shown



Online Hyperparameter-Free Sparse Estimation

MethOd Authors: Dave Zachariah and Petre Stoica (Uppsala University)
» Problem Statement:
> Recover sparse 6 € RP from linear measurements y;, y>.... in an online
fashion: y;=hJo+w;, t=1,2...
» Sparse lterative Covariance Based Estimation (SPICE)

as weighted square root LASSO
> Say 6 ~ N(0,P) and w; ~ N(0, 02)
» For known P and o2, the LMMSE estimator = (HTH, + o2P~")~'H]y,
is a solution to

o1
arg min pedl 2 Hn6|[5 + [10]]p-1

> Let P = diag(py, ... pp) and say we choose P and o2 such that
1

[IR, 2 (Yny} — Rn)||F is minimized, then we are essentially solving the
below problem:

o1
arg min —51yn — Hnbl[3 + [10][p—1 + tr(HaPH] + 021n)
gecp O

» The equivalent weighted square root LASSO problem
arg min [lyn — Hn6l|2 + ||Dn6)|1
fecr

2 2
where D, = diag(} %7 A %)



Online Hyperparameter-Free Sparse Estimation

MethOd Authors: Dave Zachariah and Petre Stoica (Uppsala University)

» Online SPICE
> Weighted squre root LASSO cost function:

arg min ||yn — Hnf||2 + |[Dnf|[4
fecp
> Decouple the variables 0; in the cost function using substitution:
Vi 2y — >k Cub

0/ = arg min (||Vf — c;6ill2 + dil6;] + const
0.

i

» Cyclic minimization of 6; done to obtain optimized 6
» Closed form recursion for 6; found by switching to polar coordinates



Robust PCA with Partial Subspace Knowledge

Authors: Jinchun Zhan and Namrata Vaswani

» Problem Statement:
» Given M, decompose as M = L + S, where L is a low rank matrix and S is
a sparse matrix.
» Partial knowledge of column space of L is available in form of G

» Main results:
» Modified Principle Component Pursuit (Modified-PCP) is proposed.
> We can write:
M=(1-GG")L+G(G'L)+S
orM= Lnew+GX+S

> Then, Lnew, X, S can be recovered by solving the below optimization:
minimize ||Lnew||« + A||S]]1
X,S

Lnew, X,

subject to Lnew + GX+S =M

» Conditions given for exact recovery (W.H.P )



Homotopy Based Algorithms for /y Regularized
Least Squares

Authors: Charles Soussen, Jerome Idier, Junbo Duan and David Brie
> Recover sparse x € R" from m(< n) measurements y € R™, where

y=Ax+w
Unconstrained formulation:

min 7 (x, A) = [ly — Ax[[3 + X[|x]lo

» The set of solution to ¢y regularized problem is piecewise constant.
»> Crude justification using ¢y curve
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Homotopy Based Algorithms for /y Regularized
Least Squares

Authors: Charles Soussen, Jerome Idier, Junbo Duan and David Brie
»> Another interesting result:

min 7 (X, A) = [ly — Asxs][3 + A|S] Q)
misn lly — Asxgl||2 subjectto |S| < k )

» P1 is more well conditioned than P2, with lesser number of local minimas

> Greedy algorithm proposed for regularization path tracing
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