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A Pessimistic Approximation for the Fisher
Information Measure authors: Manuel s. Stein and Josef A. Nossek

> Suppose § is an unbiased estimate of 6 given N observations
Y = {Yh}’z, cee 7yN}'
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where Fy(0) = /N (%ﬁ) p(Y;0)dY is the Fischer information.
Y

> In many situations, p(Y; 0) takes a complicated form, and evaluation of Fischer
information becomes intractable.

> Thus, we seek a tight lower bound for the Fischer information which can be
computed directly from the observations. Preferably, in terms of moments and its
derivatives.
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> A tighter lower bound is proposed: F(6) >
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Low Rank Positive Semidefinite Matrix Recovery
From Corrupted Rank-One Measurements

Authors: Yuanxin Li, Yue Sun and Yuejie Chi, Affiliation: Ohio State Univ.
» Estimation of low-rank PSD matrix from a set of rank-one measurments

corrupted by arbitrary outliers.
» Recover PSD matrix Xo given m rank-one measurements z1, 2o, . .., Zm.
7 =(Z;,Xo) = (a;a] , Xo) = a] Xoa.

» Such measurments could arise due to physical limitations, e.g., incapability to
capture phases, optical imaging from intensity measurements, noncoherent
measurements etc.

> Example: Intensity measurements,
2 T T T
z; = |(a;, Xo)|* = a; <X0X0> a; = a; Xoa,
where Xg = xoxg is the lifted rank-one matrix.

» In many applications, one may have aggregate of measurments:
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Low Rank Positive Semidefinite Matrix Recovery
From Corrupted Rank-One Measurements

» Recover PSD matrix Xo given m rank-one measurements zi, 2o, . .., Zm.

z = (Z;,Xo) = (a;a] , Xo) = a] Xoa;.

> Prior art: Phase Lift algorithm
in Tr(X) s.t. —AX)|1 <e.
FinTHX) st z— AX)l <
In presence of outliers, € can be arbitrarily large.

Robust Phase-Lift algorithm fixes this issue.
Current work extends it to handle low-rank PSD matrix recovery.

»> A parameter free convex relaxation is proposed.

(Robust-PhaseLift:) X = argminy . ¢llz — A(X)]1.

» Aslongas m> cynr?,and s < 570 (outlier sparsity), the solution to above
satisfies ||X — Xo||r < %€ with probability exceeding 1 — exp(—~ym/r?).

> Proposed optimization is solved via non-convex subgradient descent technique.



A unified framework for low autocorrelation
sequence design via majorization-minimization
Authors: Licheng Zhao, Junxiao Song, Prabhu Babu, and Daniel P. Palomar

> Design sequences with low autocorrelation sidelobes.
Applications: CDMA cellular systems, radar systems, cryptography etc.

> Autocorrelation of a sequence x = (x1, X, ..., Xn).
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> Metrics for goodness of autocorrelation sidelobes:

N—1 N—1
ISL = 1 2, WISL = Wi |1 2, PSL = max rgl} -
;|k| ; 7k g nax - A}

> Proposed unified metric: Weighted Peak or Integrated Sidelobe Level
N—1
WPISL = >~ wj |r[P .
k=1



A unified framework for low autocorrelation
sequence design via majorization-minimization

» Other constraints of concern in addition to sidelobe supression.

1. Constant Modulus constraint.

2. Peak-to-Avg-Power (PAPR) constraint
3. Discrete phase constraint
4.

Similarity constraint

» Proposed problem formulation:

minimize SN, wic [k (%)
r -
subjectto x € X,

where r(x) = x"#U,x for some suitable Toeplitz shift matrix Uy, and

x = {xec||xZ = &} n(nc).

> Above optimization is solved via majorization-minimization procedure
(accelerated by SQUARE-EM or local majorization).

» See paper for three useful majorization tricks.



Multidimensional Harmonic Retrieval via Coupled
Canonical Polyadic Decomposition - Model and
Identlflabllty Authors: Mikael Sorensen and Lieven De Lathauwer

» Multidimensional Harmonic Retrieval (MHR) is a fundamental signal proc.
problem with applications in radar, sonar, wireless communication and channel
sounding.

» MHR structure can arise due to Doppler affects, structured RX/TX antenna
arrays, carrier frequency offsets.

» Question: What are the necessary and sufficient conditions for uniqueness of
MHR structure given a set of observations of a noisy MHR signal.

> There exists a link between MHR and Canonical Polyadic Decomposition (CPD).

» Using the CPD interpretation of MHR problem, one can derive necessary and
sufficient consitions for a uniqueness of MHR structure.

» Surprisingly, using CPD framework one can show that the necessary and
sufficient conditions are the same.



Multidimensional Harmonic Retrieval via Coupled
Canonical Polyadic Decomposition - Model and
Identlflabllty

Canonical Polyadic Decomposition (CPD):
» Consider a third order tensor X € C/*J*K,
> A polyadic decomposition is a decomposition of X into rank-1 terms

R
(CIXJXK S5X = Zar®br®0r.
r=1

> The rank of a tensor X is equal to the minimal number of rank-1 tensors that
yield X in a linear combination.

> Let A, B and C be matrices made by stacking ar, b, and ¢, as columns. A, B
and C are called factor matrices of X.

» Matrix representation of tensor:

R
X() = 5" aybre] = BD; (A)CT
r=1
x(-) BD; (A)
CHVxK 53X .= : = ; c'=(AoB)C.
X(-) BD, (A)



Other Interesting Papers:

» Massive MIMO Channel Subspace Estimation From Low-Dimensional
Projections.

» Joint BS-User Association, Power Allocation, and User-Side Interference
Cancellation in Cell-free Heterogeneous Networks.

» Extending Classical Multirate Signal Processing Theory to Graphs a Part | and II.

> Sparse Reconstruction Algorithm for Nonhomogeneous Counting Rate
Estimation.



