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A Pessimistic Approximation for the Fisher
Information Measure Authors: Manuel S. Stein and Josef A. Nossek

I Suppose θ̂ is an unbiased estimate of θ given N observations
Y = {y1, y2, . . . , yN}.

Var(θ̂) ≥
1

FY (θ)

where FY (θ) =

∫
YN

(
∂ log p(Y ; θ)

∂θ

)2
p(Y ; θ)dY is the Fischer information.

I In many situations, p(Y ; θ) takes a complicated form, and evaluation of Fischer
information becomes intractable.

I Thus, we seek a tight lower bound for the Fischer information which can be
computed directly from the observations. Preferably, in terms of moments and its
derivatives.

I Earlier result: F (θ) ≥ 1
µ2(θ)

(
∂µ1(θ)
∂θ

)2
.

I A tighter lower bound is proposed: F (θ) ≥ 1
µ2(θ)

(
∂µ1(θ)
∂θ

+
β?(θ)√
µ2(θ)

∂µ2(θ)
∂θ

)2

1+2β?(θ)µ̄3(θ)+β?2(θ)(µ̄4(θ)−1)

where β?(θ) =
∂µ1(θ)
∂θ

√
µ2(θ)µ̄3(θ)− ∂µ2(θ)

∂θ
∂µ2(θ)
∂θ

µ̄3(θ)− ∂µ1(θ)
∂θ

√
µ2(θ)(µ̄4(θ)−1)

.



Low Rank Positive Semidefinite Matrix Recovery
From Corrupted Rank-One Measurements
Authors: Yuanxin Li, Yue Sun and Yuejie Chi, Affiliation: Ohio State Univ.

I Estimation of low-rank PSD matrix from a set of rank-one measurments
corrupted by arbitrary outliers.

I Recover PSD matrix X0 given m rank-one measurements z1, z2, . . . , zm.

zi = 〈Z i ,X 0〉 = 〈ai aT
i ,X 0〉 = aT

i X 0ai .

I Such measurments could arise due to physical limitations, e.g., incapability to
capture phases, optical imaging from intensity measurements, noncoherent
measurements etc.

I Example: Intensity measurements,

zi = |〈ai , x0〉|2 = aT
i

(
x0xT

0

)
ai = aT

i X 0ai

where X0 = x0xT
0 is the lifted rank-one matrix.

I In many applications, one may have aggregate of measurments:

zi =
1
L

L∑
l=1

|〈ai , x l 〉|2 = aT
i

1
L

L∑
l=1

x l xT
l

 ai ≈ aT
i X 0ai .



Low Rank Positive Semidefinite Matrix Recovery
From Corrupted Rank-One Measurements

I Recover PSD matrix X0 given m rank-one measurements z1, z2, . . . , zm.

zi = 〈Z i ,X 0〉 = 〈ai aT
i ,X 0〉 = aT

i X 0ai .

I Prior art: Phase Lift algorithm

min
X � 0

Tr(X) s.t. ‖z −A(X)‖1 ≤ ε.

In presence of outliers, ε can be arbitrarily large.
Robust Phase-Lift algorithm fixes this issue.
Current work extends it to handle low-rank PSD matrix recovery.

I A parameter free convex relaxation is proposed.

(Robust-PhaseLift:) X̂ = arg minX � 0‖z −A(X)‖1.

I As long as m ≥ c1nr2, and s ≤ s0
r (outlier sparsity), the solution to above

satisfies ||X̂− X0||F ≤
c2rε

m with probability exceeding 1− exp(−γm/r2).

I Proposed optimization is solved via non-convex subgradient descent technique.



A unified framework for low autocorrelation
sequence design via majorization-minimization
Authors: Licheng Zhao, Junxiao Song, Prabhu Babu, and Daniel P. Palomar

I Design sequences with low autocorrelation sidelobes.
Applications: CDMA cellular systems, radar systems, cryptography etc.

I Autocorrelation of a sequence x = (x1, x2, . . . , xn).

rk =

N−k∑
n=1

xnx∗n+k = r∗−k (aperiodic)

rk =
N∑

n=1

xnx∗(n+k)(mod N) = r∗−k (periodic)

I Metrics for goodness of autocorrelation sidelobes:

ISL =

N−1∑
k=1

|rk |2 , WISL =

N−1∑
k=1

wk |rk |2 , PSL = max
k=1,2,··· ,N−1

{|rk |} .

I Proposed unified metric: Weighted Peak or Integrated Sidelobe Level

WPISL =

N−1∑
k=1

wk |rk |p .



A unified framework for low autocorrelation
sequence design via majorization-minimization

I Other constraints of concern in addition to sidelobe supression.
1. Constant Modulus constraint.
2. Peak-to-Avg-Power (PAPR) constraint
3. Discrete phase constraint
4. Similarity constraint

I Proposed problem formulation:

minimize
x

∑N−1
k=1 wk |rk (x)|p

subject to x ∈ X ,

where rk (x) = xHUk x for some suitable Toeplitz shift matrix Uk , and

X =
{

x ∈ CN
∣∣∣ ‖x‖2

2 = c2
e

}
∩ (∩i Ci ) .

I Above optimization is solved via majorization-minimization procedure
(accelerated by SQUARE-EM or local majorization).

I See paper for three useful majorization tricks.



Multidimensional Harmonic Retrieval via Coupled
Canonical Polyadic Decomposition - Model and
Identifiablity Authors: Mikael Sorensen and Lieven De Lathauwer

I Multidimensional Harmonic Retrieval (MHR) is a fundamental signal proc.
problem with applications in radar, sonar, wireless communication and channel
sounding.

I MHR structure can arise due to Doppler affects, structured RX/TX antenna
arrays, carrier frequency offsets.

I Question: What are the necessary and sufficient conditions for uniqueness of
MHR structure given a set of observations of a noisy MHR signal.

I There exists a link between MHR and Canonical Polyadic Decomposition (CPD).

I Using the CPD interpretation of MHR problem, one can derive necessary and
sufficient consitions for a uniqueness of MHR structure.

I Surprisingly, using CPD framework one can show that the necessary and
sufficient conditions are the same.



Multidimensional Harmonic Retrieval via Coupled
Canonical Polyadic Decomposition - Model and
Identifiablity

I Canonical Polyadic Decomposition (CPD):
I Consider a third order tensor X ∈ CI×J×K .
I A polyadic decomposition is a decomposition of X into rank-1 terms

CI×J×K 3 X =
R∑

r=1

ar ⊗br ⊗ cr .

I The rank of a tensor X is equal to the minimal number of rank-1 tensors that
yield X in a linear combination.

I Let A, B and C be matrices made by stacking ar , br and cr as columns. A,B
and C are called factor matrices of X .

I Matrix representation of tensor:

X(i··) =
R∑

r=1

air br cT
r = BDi (A) CT ,

CIJ×K 3 X :=


X(1··)

...
X(I··)

 =

 BD1 (A)
...

BDI (A)

CT = (A� B) CT .



Other Interesting Papers:

I Massive MIMO Channel Subspace Estimation From Low-Dimensional
Projections.

I Joint BS-User Association, Power Allocation, and User-Side Interference
Cancellation in Cell-free Heterogeneous Networks.

I Extending Classical Multirate Signal Processing Theory to Graphs â Part I and II.

I Sparse Reconstruction Algorithm for Nonhomogeneous Counting Rate
Estimation.


