|IEEE-TSP

SEPTEMBER 15,
2015




TWO TIMESCALE JOINT BEAMFORMING
AND ROUTING FOR MULTI-ANTENNA
D2D NETWORKS VIA STOCHASTIC
CUTTING PLANE

Authors : Liu A., Lau V. K. N., Zhuang F., Chen |.

D2D pairs know the instantaneous channel and the BS knows
the long term statistics.

Beamforming: Short term control, requires instantaneous
statistics

Flow Control : Long term control , requires long term statistics

Design Objective : Maximize the utility function subject to
average transmit power constraint and instantaneous physical
layer constraints.

This has both long term and short term constraints.
System considers a multi-hop D2D network with unicast flows

Nodes work as transmitters, relays and receivers
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Dirty paper coded and zero-forcing beamforming used
Rate problem solved modelled as a stochastic
optimization problem

Stochastic cutting plane algorithm used to solve it
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MULTISCALE MULTI-LAG CHANNEL
ESTIMATION USING LOW RANK
APPROXIMATION FOR OFDM

Authors : Beyqgi, S. and Mitra, U

MSML a good model to approximate wideband channels,
such as underwater acoustic channels and radar channels

Multiple paths, each with a delay, scale and an attenuation
factor.

The ML estimate in this case is a non linear
multidimensional Least Squares problem.

In OFDM communication the carrier orthogonality is
corrupted by Doppler shifts.

It is shown that the channel is low rank and the channel

rank is equal to the number of active sub-carriers in the
OFDM signals



CONTRIBUTIONS

1. It shown that the closeness of Doppler scales
induces a low rank in the channel

2. Porny method is used for is for spectral estimation
and to exploit the low rank channel matrix

3. A bound on the error between the noiseless signal
and the received signal is derived

SYSTEM MODEL
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The received signal can be reduced to a difference

equation in terms of the channel coefficients
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Fiz. 1. () and (k) depict singular valies of the data matree I3 (left plots) and
noisy data matre B = #H(r] (nght plots) for an OFDM signalmg wath #
dorinant paths. Doppler scales o, are chozen randomly from [~ 2, o] witha =
0.001. (2) P = 5: (b) F = 20.
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Fiz. 4. Comparizon of nommalized MSE versus the mmmber of dominant paths
m a MEML channel—our proposed comvex and non-convex approachss with
3A method proposed m [20].



LEARNING THE
STRUCTURE FOR
STRUCTURED SPARSITY

Authors : Shervashidze and Bach

All the existing methods for learning under the assumption of structured
sparsity rely on prior knowledge on how to weight individual subsets of
variables during the subset selection procedure

This prior knowledge is unavailable in practice.

This paper follows a Bayesian approach to the problem of group weight
learning.

Group parameters modelled as hyper-parameters of heavy tailed priors

The parameter vector is represented as a sum of latent vectors identically
zero at indices not included in a subset A of indices.

The support is assumed to be included in a union of such sets



The problem is approached using probabilistic modelling
with a broad family of heavy tailed priors

Followed by the derivation of a vibrational inference
scheme to learn the parameters of these priors

A greedy algorithm is proposed making this inference
scalable to settings where the number of groups
considered is large

Experimentally shown that the model parameters may
be recovered for data generated from a model



ANALYSIS AND DESIGN OF MULTIPLE
ANTENNA COGNITIVE RADIOS WITH
MULTIPLE PRIMARY USER SIGNALS

Authors : Morales-Jimenez, D. , Louie, R.H.Y. , McKay,
M.R., Chen, Y.

Multi-antenna spectrum sensing system is considered
for multiple primary user signals

The number of PU signals is assumed to be greater
than the number of sensing antennas thus forcing the
received signal covariance matrix to be full rank

Earlier works include detection for non-full rank cases

The moments of the proposed detector under the two
hypotheses are derived

Single primary user sending spatially multiplexed
signal is considered as a special case
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The moments of GLRT are derived as gamma functions
under both the hypotheses

Asymptotic approximations are then made to
approximate the pdf for large number of primary
signals to Gaussian.
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SOME MORE PAPERS

Large-Scale Convex Optimization for Dense Wireless
Cooperative Networks

-Yuanming Shi; Jun Zhang; O'Donoghue, B.; Letaief, K.B.

Compressive Sensing With Prior Support Quality
Information and Application to Massive MIMO Channel
Estimation With Temporal Correlation

-Rao, X.: Lau, V.K.N.

Nested Sparse Approximation: Structured Estimation of
V2V Channels Using Geometry-Based Stochastic
Channel Model

-Beyqi, S.; Mitra, U.; Strom, E.G.
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