

## Journal Watch: IEEE Transactions on Information Theory, July 2014

Venugopalakrishna Y. R.

SPC Lab, IISc

2<sup>nd</sup> August, 2014

## A New Entropy Power Inequality for Integer-valued Random Variables

Saeid Haghighatshoar, EPFL, Emmanuel Abbe, Princeton Univ. and Emre Telatar, EPFL

- Entropy power inequality (EPI): Tight lower bound on differential entropy of sum of two independent real RVs in terms of individual entropies (EPI: h(X + X') - h(X) ≥ <sup>1</sup>/<sub>2</sub>)
- Used as a key ingredient to prove converse results in coding theorems
- Literature: Universal EPI inequality for discrete RVs is not known
- Recent result from Tao:  $H(X + X') H(X) \ge \frac{1}{2} o(1)$  when X, X' are i.i.d. with high entropy
- This paper: H(X + X') − H(X) ≥ g(H(X)) where X, X' are integer valued RVs and g is a strictly increasing function on R<sub>+</sub> with g(0) = 0

| Upper and    | Lower Bounds to th    | o Information Pato Tr | ancforred |
|--------------|-----------------------|-----------------------|-----------|
|              |                       |                       |           |
| Through Fi   | rst-Order Markov Cl   | hannels With Free-Rui | nning     |
| Continuous   | State                 |                       |           |
|              | <b>-</b>              |                       |           |
| L. Barletta, | Technische Universita | at Munchen, Germany   |           |

Paper 02

M. Magarini, S. Pecorino, and A. Spalvieri, Politecnico di Milano, Italy

| Paper 01 | Paper 02 | Paper 03 | Paper 04 |
|----------|----------|----------|----------|
|          |          |          |          |
|          |          |          |          |
|          |          |          |          |

- This paper considers a dynamic system
  - State equation:  $S_k = f_k(S_{k-1}, V_{k-1})$ , k = 1, 2, ..., V is process noise
  - Measurement equation: Y<sub>k</sub> = h<sub>k</sub>(S<sub>k</sub>, N<sub>k</sub>), N is measurement noise
  - $f_k$  and  $h_k$  are sequence of known functions
- Mutual information rate between state and measurement  $I(S; Y) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E} \left[ \log_2 \frac{p(Y_k/S_k)}{p(Y_k/Y_{k-1})} \right]$
- Sample estimate of I(S; Y) can be obtained by generating the joint sequence (s<sub>0</sub><sup>n</sup>, y<sub>1</sub><sup>n</sup>) according to state transition prob. and measurement prob.

| Paper 01 | Paper 02 | Paper 03 | Paper 04 |
|----------|----------|----------|----------|
|          |          |          |          |
|          |          |          |          |
|          |          |          |          |
|          |          |          |          |
|          |          |          |          |

- Gaussian and Linear case, the probabilities can be obtained by Bayesian tracking
- If probabilities are non tractable, upper and lower bounds on I(S; Y by approximate Bayesian tracking)
- If f and h are non-linear functions, particle filters are used for deriving bounds
- Applied to multiplicative phase noise channel and Gauss-Markov fading channel

|  | Paper 03 |  |
|--|----------|--|
|  |          |  |
|  |          |  |

## Sparse Recovery With Unknown Variance: A LASSO-Type Approach

- S. Chretien, Universite de Franche-Comte, Besancon, France
- S. Darses, Universit  $\tilde{A} \textcircled{C}$  Aix-Marseille, Marseille Cedex, France

|  | Paper 03 |  |
|--|----------|--|
|  |          |  |
|  |          |  |

- $y = X\beta + z$ , X is  $n \times p$  design matrix, n < p,  $\beta$  regression vector,  $z \sim \mathcal{N}(0, \sigma^2 I)$  is noise
- $\beta$  and  $\sigma^2$  are both unknown
- For LASSO,  $\lambda$  should be of the order of  $\sigma\sqrt{\log p}$
- This paper gives two LASSO-type strategies to obtain  $\beta,$  when  $\sigma$  is unknown
- Strategy A: Variance estimator, Strategy B: Trade-off between fidelity and penalty

| Known variance                                                                                                  | Unknown variance: Strategy (A)                                                                                                                                                       | Unknown variance: Strategy (B)                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\widehat{\beta} \in \mathop{\mathrm{argmin}}_{b \in \mathbb{R}^p} \tfrac{\ y - Xb\ _2^2}{2} + \lambda \ b\ _1$ | $\widehat{\beta}_{\lambda} \in \mathop{\mathrm{argmin}}_{b \in \mathbb{R}^p} \ \frac{\ y - Xb\ _2^2}{2} + \lambda \ b\ _1$                                                           | $\widehat{\beta}_{\lambda} \in \mathop{\mathrm{argmin}}_{b \in \mathbb{R}^p} \ \tfrac{\ y - Xb\ _2^2}{2} + \lambda \ \ b\ _1$                                                                                           |
| $\lambda = O(\sigma \sqrt{\log p})$                                                                             | Tune $\lambda$ to $\hat{\lambda}$ s.t. : $\hat{\lambda} = C_{var} \hat{\sigma} \sqrt{\log p}$<br>with : $\hat{\sigma}^2 = \frac{\ y - X \hat{\beta}_{\xi}\ _2^2}{n}$ , $C_{var} > 0$ | $\begin{array}{l} \text{Tune }\lambda \text{ to }\widehat{\lambda} \text{ s.t. }:\\ \widehat{\lambda}\ \widehat{\beta}_{\widehat{\lambda}}\ _1 = C \ \ y-X\widehat{\beta}_{\widehat{\lambda}}\ _2^2, \ C>0 \end{array}$ |

|  | Paper 04 |
|--|----------|
|  |          |
|  |          |

## Reconstruction of Signals From Frame Coefficients With Erasures at Unknown Locations

D. Han, Univ. of Central Florida, Orlando W. Sun, Nankai Univ., China

| Paper 02 Paper 03 | Paper 04 |
|-------------------|----------|
|                   |          |
|                   |          |
|                   |          |

- Frames  $\{\phi_i\}_{i=1,...,n}$  of a vector space are an over-complete dictionary that can span the vector space (generalization of bases) but satisfy  $\alpha ||f||^2 \leq \sum_{i=1}^n |\langle f, \phi_i \rangle|^2 \leq \beta ||f||^2$
- The advantage with frames is it has redundant frame vectors, thus robust to erasures
- This paper considers recovery of erased frame coefficients at known and unknown locations and ordering of frame coefficients
- Known erasure locations case: assumes that {φ<sub>i</sub>} with erasures still remains frame, proposes solving a simple linear system of equations to recover erasures (need not use inversion)
- Main result: There exists a large class of encoding frames that ensure the full recovery of the indices for almost all signals