

Journal Watch: IEEE Transactions on Signal Processing, Oct 15th Issue

Venugopalakrishna Y. R.

SPC Lab, IISc.

8th November, 2014

Compressive Diffusion Strategies Over Distributed Networks for Reduced Communication Load

Muhammed O. Sayin and Suleyman Serdar Kozat Bilkent University, Bilkent, Ankar, Turkey

- Setup: *N* sensors with measurements, $d_{i,t} = \mathbf{w}_0^T \mathbf{u}_{i,t} + v$
- Global LMS update: $\mathbf{w}_{t+1} = \mathbf{w}_t + \mu \sum_{n=1}^{N} (d_{i,t} \mathbf{w}_t^T \mathbf{u}_{i,t})$
- Goal: To estimate the weight vector \boldsymbol{w}_0 in distributed manner
- One approach to reduce communication load: Diffusion LMS
 - combine the weights from neighboring nodes (only weights exchanged)
 - adaptively estimate using LMS
- This paper proposes further reduction
 - weight vector is transformed into a scalar/single-bit before diffusion
 - reconstructed and used for combining
- Analysis of transient, steady state and tracking behavior, show close performance to full exchange

Paper 02	

Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models

- Z. Meng and A. O. Hero, III, University of Michigan
- D. Wei, IBM Research, Newyork
- A. Wiesel, The Hebrew University of Jerusalem, Israel

Paper 02	

• Estimate the pdf of the multi-variate of Gaussian distribution

$$p(\mathbf{x}; \mathbf{J}) = (2\pi)^{-p/2} (\det \mathbf{J})^{1/2} \exp\left(-\frac{1}{2}\mathbf{x}^T \mathbf{J} \mathbf{x}\right).$$

- Graphical models: represent the dependence of variables in ${\boldsymbol{x}}$
- ML estimate of inverse covariance matrix J

$$\begin{split} \widehat{\mathbf{J}}^{\text{GML}} &= \mathop{\arg\min}_{\mathbf{J}} \langle \widehat{\mathbf{\Sigma}}, \mathbf{J} \rangle - \log \det \mathbf{J} \\ \text{s.t.} \quad \mathbf{J}_{j,k} &= 0 \quad \forall (j,k) \notin \widetilde{E} \\ \quad \mathbf{J} \succeq \mathbf{0}, \end{split}$$

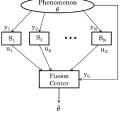
- Loopy belief propagation is unstable and biased
- Proposes a maximum marginal likelihood estimation
- At a node *i*, sub-matrix of *J* that corresponds to marginal distribution of $\{x_j\}$'s in neighborhood of *i* is estimated
- Optimization problem is non-convex, employ convex relaxation
- Comparable to centralized estimator (as *p* and num. of samples tend to infinity)

	Paper 03	

On Quantizer Design for Distributed Bayesian Estimation in Sensor Networks

Aditya Vempaty, Hao He, Biao Chen, and Pramod K. Varshney Syracuse University, USA

	Paper 03	
Phenomenon	• <i>y</i> ₁ ,, <i>y</i> _N are	



- y_1, \ldots, y_N are measurements, u_1, \ldots, u_N are quantized samples
- Fusion center (FC) estimates θ using u₁,..., u_N
- Under Bayesian setting, for a given estimation procedure at FC, design an optimal strategy to quantize at individual sensors to minimize the Bayesian cost
- Contributions: For an efficient and unbiased estimator at FC and conditionally independent observations at sensors, using identical sensors is optimal
- Quantizer under rate constraint on MAC channel: binary quantizers is optimal
- Also considers location parameter estimation

Binary Symbol Recovery Via ℓ_{∞} Minimization in Faster-Than-Nyquist Signaling Systems

F. M. Han and H. X. Zou, Tsinghua University, China

M. Jin, Nanjing Research Institute of Electronic Engineering, China

- Nyquist criterion: the maximum symbol rate can not exceed twice the bandwidth to avoid inter-symbol interference (ISI)
- More symbols can be packed by making modulation pulses constitute a frame for the spanned time-frequency plane
- Thus, $\mathbf{s} = \mathbf{G}\mathbf{b}$, where $\mathbf{b} \in \{-1, +1\}^N$, $G \in \mathcal{R}^{M \times N}$, $\mathbf{s} \in \mathcal{R}^M$, M < N

find \boldsymbol{b} s.t. $\boldsymbol{s} = \boldsymbol{G}\boldsymbol{b}$ $b_n \in \{+1, -1\}, \quad n = 1, \dots, N$

- Combinatorial optimization problem
- Convex relaxation

$$\tilde{\boldsymbol{b}} = \arg\min \|\boldsymbol{b}\|_{\infty}$$
 s.t. $\boldsymbol{s} = \boldsymbol{G}\boldsymbol{b}$

	Paper 04

Other Papers

• On ArXiv: Convex Optimization for Big Data by Volkan Cevher, Stephen Becker, and Mark Schmidt