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• Setup: N sensors with measurements, di ,t = w
T
0 ui ,t + v

• Global LMS update: wt+1 = wt + µ
∑N

n=1(di ,t − w
T
t ui ,t)

• Goal: To estimate the weight vector w0 in distributed manner

• One approach to reduce communication load: Diffusion LMS
• combine the weights from neighboring nodes (only weights

exchanged)
• adaptively estimate using LMS

• This paper proposes further reduction
• weight vector is transformed into a scalar/single-bit before

diffusion
• reconstructed and used for combining

• Analysis of transient, steady state and tracking behavior, show
close performance to full exchange
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• Estimate the pdf of the multi-variate of Gaussian distribution

• Graphical models: represent the dependence of variables in x

• ML estimate of inverse covariance matrix J

• Loopy belief propagation is unstable and biased
• Proposes a maximum marginal likelihood estimation
• At a node i , sub-matrix of J that corresponds to marginal
distribution of {xj}’s in neighborhood of i is estimated

• Optimization problem is non-convex, employ convex relaxation
• Comparable to centralized estimator (as p and num. of
samples tend to infinity)
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• y1, . . . , yN are
measurements,
u1, . . . , uN are quantized
samples

• Fusion center (FC)
estimates θ using
u1, . . . , uN

• Under Bayesian setting, for a given estimation procedure at
FC, design an optimal strategy to quantize at individual
sensors to minimize the Bayesian cost

• Contributions: For an efficient and unbiased estimator at FC
and conditionally independent observations at sensors, using
identical sensors is optimal

• Quantizer under rate constraint on MAC channel: binary
quantizers is optimal

• Also considers location parameter estimation
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• Nyquist criterion: the maximum symbol rate can not exceed
twice the bandwidth to avoid inter-symbol interference (ISI)

• More symbols can be packed by making modulation pulses
constitute a frame for the spanned time-frequency plane

• Thus, s = Gb, where b ∈ {−1,+1}N , G ∈ RM×N , s ∈ RM ,
M < N

• Combinatorial optimization problem

• Convex relaxation
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Other Papers

• On ArXiv: Convex Optimization for Big Data by Volkan
Cevher, Stephen Becker, and Mark Schmidt
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