
Journal Watch:

IEEE Transanctions Signal Processing,
15 February, 2018

Saurabh Khanna,
Signal Processing for Communication Lab, ECE, IISc



Sparse Signal Recovery Using Iterative Proximal
Projection

I Sparse signal recovery problem:

min
x

J(x) s.t . ||y− Ax||2 ≤ ε

J is non-smooth sparsity promoting function, e.g., `0-norm,
`1-norm.

I Existing liteature has focussed on J being convex.
I This work focusses on J being nonconvex & non-smooth.
I Approach: use proximal algorithms.

I Proximal mapping of function g is defined as

proxg(x) = arg min
u∈dom(g)

{
1
2
||x − u||22 + g(u)

}
I Examples:

I g(x) = λ||x||0, proxg is the hard thresholding operator
I g(x) = λ||x||1, proxg is the soft thresholding operator
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Sparse Signal Recovery Using Iterative Proximal
Projection

I Splitting methods

min
x∈Rn

f (x) + g(x)

f is smooth, convex/nonconvex and g is non-smooth,
nonconvex

I Forward-Backward Splitting

xk+1 = proxµk g (xk − µk∇f (xk ))

I Backward-Backward Splitting

xk+1 = proxg (proxµk f (xk ))

I Accelerations

x̂k = xk + w(xk − xk−1)

xk+1 = proxµk g (x̂k − µk∇f (x̂k ))



Sparse Signal Recovery Using Iterative Proximal
Projection

I Splitting methods

min
x∈Rn

f (x) + g(x)

f is smooth, convex/nonconvex and g is non-smooth,
nonconvex

I Forward-Backward Splitting

xk+1 = proxµk g (xk − µk∇f (xk ))

I Backward-Backward Splitting

xk+1 = proxg (proxµk f (xk ))

I Accelerations

x̂k = xk + w(xk − xk−1)

xk+1 = proxµk g (x̂k − µk∇f (x̂k ))



Learning Convex Regularizers for Optimal
Bayesian Denoising
Authors: Ha Q. Nguyen, Emrah Bostan and Michael Unser

I Recover stochastic x from its noisy observations

y = x + n

I n is AWGN of variance σ2.
I MAP inference is the way to solve this
I Revisit MAP from perspective of estimation accuracy

instead of deviation from prior model

I Typical MAP formulation:

x̂MAP = arg min
x

{
1
2
‖y − x‖22 + σ2

N∑
i=1

ΦU([Lx ]i)

}
,

I L = Whitening filter
I ΦU = −log pU is called the penalty function

I The penalty function is designed such that it captures the
statistics of collection of clean signals.
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Learning Convex Regularizers for Optimal
Bayesian Denoising
Authors: Ha Q. Nguyen, Emrah Bostan and Michael Unser

I Recover stochastic x from its noisy observations

y = x + n

I ADMM based denoising solution is proposed.
I Remarks:

I Assumed that x can be whitened by some matrix L.
I u = Lx has i.i.d. entries.
I Penalty function ΦU is separable.
I ADMM formulation of MAP:

1
2
‖y − x‖2

2 + σ2ΦU(u)− 〈α,Lx − u〉+
µ

2
‖Lx − u‖2

2
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I ADMM formulation of MAP:

1
2
‖y − x‖22 + σ2ΦU(u)− 〈α,Lx − u〉+

µ

2
‖Lx − u‖22

I Update for u looks like:

u(k+1) = proxσ2/µΦU

(
Lx (k+1) − 1

µ
α(k+1)

)
.

I Update for u is typically a pointwise shrinkage operation.
I Shrinkage operator depends on the choice of penalty ΦU .
I Key Idea: Learn optimal shrinkage directly from the data.
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I Learning the shrinkage function from data:
I Parameterized model for shrinkage function T : R→ R.

T (x) =
M∑

m=−M

cmψ
( x

∆
−m

)
.

I Given a collection of ground-truth signals {xl}L
l=1, the

parameters of shrinkage function can be learned by
minimizing:

J(c) =
1
2

L∑
`=1

∥∥∥x (K )(c,y`)− x`
∥∥∥2

2
.

I Shrinkage operator learned at one noise level works for all
noise levels!



A Geometric Approach to Covariance Matrix
Estimation and Applications to Radar Problems
Authors: Augusto Aubrey, Antonio De Maio and Luca Pallotta

I Given data vectors r1, r2,K , estimate the underlying true
covariance matrix subject to certain constraints.

I Step-1: First compute the sample covariance matrix
Ŝ = 1

K

∑K
i=1 rirT

i .
I Step-2: Project Ŝ into a specific set in some matrix norm

sense (unitary invariant).

I The constraints encompasses p.d. matrices which can be
modeled as sum of an unknown psd matrix(interference +
clutter) and a term proportional to Identity matrix (white
noise).



A Geometric Approach to Covariance Matrix
Estimation and Applications to Radar Problems
Authors: Augusto Aubrey, Antonio De Maio and Luca Pallotta

I Proposed covariance matrix estimation flow



Other Interesting Papers:

I Optimized Self-Localization for SLAM in Dynamic Scenes
Using Probability Hypothesis Density Filters

I Stochastic Approximation and Memory-Limited Subspace
Tracking for Poisson Streaming Data

I Optimal Nested Test Plan for Combinatorial Quantitative
Group Testing

I On Fienup Methods for Sparse Phase Retrieval

I Complex Factor Analysis and Extensions

I Nesterov-Based Alternating Optimization for Nonnegative
Tensor Factorization: Algorithm and Parallel
Implementation


