JOURNAL WATCH ON IEEE COMMUNICATION LETTERS ISSUE - SEP., 2012

Harish V 13 Oct., 2012

- 49 papers in 6 categories, about 190 pages long.
- The field Wireless Comm has major number of papers: 32

OVERVIEW OF THE JOURNAL

- 49 papers in 6 categories, about 190 pages long.
- The field Wireless Comm has major number of papers: 32 (probably the reason for a dedicated publication of WC Letters!)

OVERVIEW OF THE JOURNAL

- 49 papers in 6 categories, about 190 pages long.
- The field Wireless Comm has major number of papers: 32 (probably the reason for a dedicated publication of WC Letters!)
- A number of interesting papers. Can carry over to one more journal watch.
- We see 4 specific papers from the interesting pool of papers from the issue.

DISTRIBUTION OF DIAGONAL ELEMENTS OF A GENERAL CENTRAL COMPLEX WISHART MATRIX

Natalia Y. Ermolova & Olav Tirkkonen Dept. of Comm. and Networking, Aalto University, Finland

• A complex Gaussian Random vector.

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry i.e. $X \sim X.e^{j\phi}$ in \mathbb{C}^n

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry i.e. $X \sim X.e^{j\phi}$ in \mathbb{C}^n
- Complete characterization: "Covariance matrix $\mathbb{E}[XX^*]$ " $[\mu = 0$, a conseq. of circular symmetry]

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry i.e. $X \sim X.e^{j\phi}$ in \mathbb{C}^n
- Complete characterization: "Covariance matrix $\mathbb{E}[XX^*]$ " [$\mu = 0$, a conseq. of circular symmetry]
- In general.. a 2n-dimensional Real Gaussian.

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry i.e. $X \sim X.e^{j\phi}$ in \mathbb{C}^n
- Complete characterization: "Covariance matrix $\mathbb{E}[XX^*]$ " [$\mu = 0$, a conseq. of circular symmetry]
- In general.. a 2n-dimensional Real Gaussian.
 - No further obvious insights.
 - Non-trivial to see it natively as a simple function of X only (without Re(.) and Im(.) functions).

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry i.e. $X \sim X.e^{j\phi}$ in \mathbb{C}^n
- Complete characterization: "Covariance matrix $\mathbb{E}[XX^*]$ " [$\mu = 0$, a conseq. of circular symmetry]
- In general.. a 2n-dimensional Real Gaussian.
 - No further obvious insights.
 - Non-trivial to see it natively as a simple function of X only (without Re(.) and Im(.) functions).
- It is shown that it needs three arguments to characterize it completely [Picinbono'1996].
 - The mean vector (μ)
 - The covariance matrix or correlation matrix $(K \triangleq \mathbb{E}[XX^*])$
 - The pseudo-covar. matrix or relation matrix $(C \triangleq \mathbb{E}[XX^T])$

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry i.e. $X \sim X.e^{j\phi}$ in \mathbb{C}^n
- Complete characterization: "Covariance matrix $\mathbb{E}[XX^*]$ " [$\mu = 0$, a conseq. of circular symmetry]
- In general.. a 2n-dimensional Real Gaussian.
 - No further obvious insights.
 - Non-trivial to see it natively as a simple function of X only (without Re(.) and Im(.) functions).
- It is shown that it needs three arguments to characterize it completely [Picinbono'1996].
 - The mean vector (μ)
 - The covariance matrix or correlation matrix $(K \triangleq \mathbb{E}[XX^*])$
 - The pseudo-covar. matrix or relation matrix $(C \triangleq \mathbb{E}[XX^T])$
- In case of circular Gaussians, C = 0 and $\mu = 0$.

BACKGROUND-RANDOM MATRICES

- Random Matrices with Gaussian elements (correlated or uncorrelated elements).
- Columns are mutually independent.
- Each column is Complex Gaussian (correlated elements within)
- Simplification: "Circularly Gaussian".
- Reduces a lot of complexity.
- Wide literature on this assumption.

- Wishart Matrix a function on matrices:
- If $X \in \mathbb{C}^{n \times n}$, then $Z \triangleq X X^H$ is the Wishart matrix of X.

- Wishart Matrix a function on matrices:
- If $X \in \mathbb{C}^{n \times n}$, then $Z \triangleq X X^H$ is the Wishart matrix of X.
- Diagonal elements of Z are:

$$Z_{ii} = ||i^{th} \text{ Row of } X||_2^2$$
 $= \sum_{j=1}^n |X_{ij}|^2$

- Wishart Matrix a function on matrices:
- If $X \in \mathbb{C}^{n \times n}$, then $Z \triangleq X X^H$ is the Wishart matrix of X.
- Diagonal elements of Z are:

$$Z_{ii} = ||i^{th} \text{ Row of } X||_2^2$$
 $= \sum_{j=1}^n |X_{ij}|^2$

- Simple of case of circular symmetry implies, $Z_{ii} \sim c. \chi^2_{2n}$.
- The vector of diagonal elements $w = [Z_{ii}]_{i=1}^n$ is characterizable.

- Wishart Matrix a function on matrices:
- If $X \in \mathbb{C}^{n \times n}$, then $Z \triangleq X X^H$ is the Wishart matrix of X.
- Diagonal elements of Z are:

$$Z_{ii} = ||i^{th} \text{ Row of } X||_2^2$$
 $= \sum_{j=1}^n |X_{ij}|^2$

- Simple of case of circular symmetry implies, $Z_{ii} \sim c. \chi^2_{2n}$.
- The vector of diagonal elements $w = [Z_{ii}]_{i=1}^n$ is characterizable.
- Importance: Characterize effective SNR in MIMO, under various Tx policies.
- Lot of works devoted to such analysis on diagonals of Wishart matrices.

- Practical random matrices are seen to contain non-circularly symmetric elements.
- An active area of research. Many new distributions and models are being proposed in this direction.
- This paper:
 - Non-circularly symmetric elements for Random matrix X.
 - Characterizing diag(Z) completely.
 - Derived: PDF,CDF and MGF.
 - Complex enough expressions with lot of special functions & multi-level summations, products.

A New Power Allocation Method for Parallel AWGN Channels in the Finite Block Length Regime

Jung-Hyun Park and Dong-Jo Park

Dept. of Electrical Engg. Korea Advanced Institute of Science Technology (KAIST), Korea.

- Achieving Capacity of Parallel Gaussian Channels: Waterfilling.
- Capacity maximization (vs) Achievable-rate maximization
- The block length constraint
- Series of papers by Polyanskiy on achievable rates for finite blocklengths.

THE CONTRIBUTIONS

- Maximization of latest lower bounds on achievable rate of a Gaussian channel with finite block length.
- For a given power allocation p the achievable rate is [Polyanski etal],

$$R(p) = C(p) - \sqrt{V(p)} \frac{Q^{-1}(\zeta)}{\sqrt{n}} + \frac{O(\log_b n)}{n}$$

where, $C(p)$ waterfilling capacity,
 ζ is the desired codeword error prob,
n is block length.

- \bullet A non-convex optimization formulation using a lowerbound of $\mathsf{R}(\mathsf{p})$
- A new *modified* waterfilling power-allocation scheme.

Optimality of Homogeneous Sensing Range Assignment in Large-Scale Wireless Sensor Network Deployments

Dogu Arifler

Dept of Computer Engg., Eastern Mediterranean University, Cyprus.

October 14, 2012

- Sensor deployment scenario
- Coverage problem with total power constraint
- Optimal coverage subject to an overall power constraint in the network.
- Does diversity in sensing ranges of sensor nodes help??

- The deployment(location of sensors) follows a Poisson point process.
- From stochastic geometry results for the popular *boolean* model, the fraction of area not covered by any sensor is given by: $\exp\left(-\alpha \sum_{i=1} N p_i \pi r_i^2\right)$
- Two optimization problems are formed:
- 1) Minimizing uncovered area under power constraint,

minimize
$$\exp\left(-\alpha \sum_{i} p_{i} \pi r_{i}^{2}\right)$$

subject to $\sum_{i} p_{i} = 1$,
 $\alpha \sum_{i} p_{i} r_{i}^{\eta} \leq \beta$
 $r_{i} \geq 0, p_{i} \geq 0$ for $i = 1, ..., N$.

2) Power minimization under coverage area constraint,

ri

minimize
$$\alpha \sum_{i} p_{i} r_{i}^{\eta}$$

subject to $\sum_{i} p_{i} = 1$,
 $\exp\left(-\alpha \sum_{i} p_{i} \pi r_{i}^{2}\right) \leq \theta$
 $\geq 0, p_{i} \geq 0$ for $i = 1, ..., N$.

• From KKT conditions, optimality is achieved when each $r_i = r$ for both the problems.

- If all sensors deployed have the same sensing range then
 - The uncovered area is minimized for a power constraint
 - The overall power is minimized for a coverage constraint
- Optimum sensing range depends on the density of deployment α as well as the parameters β,η and θ

SUB-MODULARITY AND ANTENNA SELECTION IN MIMO SYSTEMS

Rahul Vaze¹ and Harish Ganapathy²

¹ School of Technology and Computer Science, TIFR, Mumbai

> ² Dept of ECE, University of Texas, Austin.

Definition: [Nemhauser etal., 1958]

Let N be a set and f a real-valued function defined on the set of sub-sets of N. Then f is called *sub-modular* if:

$$f(S) + f(T) \ge f(S \cup T) + f(S \cap T), \quad \forall S, T \subseteq N$$

or, equivalently:

$$f(S \cup \{a\}) - f(S) \ge f(T \cup \{a\}) - f(T),$$

$$\forall S \subseteq T \subseteq N, \ \forall a \in N$$

- Sub-modular functions are studied a while ago.
- Such functions can be optimized (sub-optimally) by simple iterative Greedy algorithms with theoretical *guarantees*. Hence are of interest.

maximize

$$R_L \subset \{1, 2, ..., N_r\}; |R_L| = L$$
 $C(R_L)$

where,

$$C(R_L) \triangleq \log \det \left(I + \frac{P}{N_t} H_{R_L} H_{R_L}^* \right)$$

- Select an optimum subset of antennas R_L ⊂ {1, 2, ..., N_t} such that it maximizes the capacity over that set of antennas.
- No elegant solution.
- Bruteforce search requires $\mathcal{O}(N_r^L)$ MIMO capacity computations.

RESULTS

- Proves that C(R_L) is a monotonic, sub-modular function over sub-sets of {1, 2, ..., N}
- Proposes a simple greedy iterative search algorithm to solve antenna selection problem.
 - Starting with a null-set, at each iteration, add that specific antenna from the remaining antennas, which maximizes the Capacity.
 - Stop when L antennas are selected.
- Main result:

If S is the set output by above algorithm, and S^* is the optimal subset then

$$C(S) \geq (1-\frac{1}{e})C(S^*)$$

- I First algorithm with theoretical guaratees.
- Extension to 'Relay selection problem' in a network of relays, where the similar approach infact gives precisely *optimal* performance.