Journal Watch On
 IEEE Communication Letters Issue - Sep., 2012

Harish V

13 Oct., 2012

Overview of the Journal

- 49 papers in 6 categories, about 190 pages long.
- The field Wireless Comm has major number of papers: 32

Overview of the Journal

- 49 papers in 6 categories, about 190 pages long.
- The field Wireless Comm has major number of papers: 32 (probably the reason for a dedicated publication of WC Letters!)

Overview of the Journal

- 49 papers in 6 categories, about 190 pages long.
- The field Wireless Comm has major number of papers: 32 (probably the reason for a dedicated publication of WC Letters!)
- A number of interesting papers. Can carry over to one more journal watch.
- We see 4 specific papers from the interesting pool of papers from the issue.

1 OF 4

Distribution of Diagonal Elements OF
A General Central Complex Wishart Matrix

Natalia Y. Ermolova \& Olav Tirkkonen
Dept. of Comm. and Networking, Aalto University, Finland

Background - Random Vectors

- A complex Gaussian Random vector.

Background - Random Vectors

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry - i.e. $X \sim X . e^{j \phi}$ in \mathbb{C}^{n}

Background - Random Vectors

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry - i.e. $X \sim X . e^{j \phi}$ in \mathbb{C}^{n}
- Complete characterization: "Covariance matrix $\mathbb{E}\left[X X^{*}\right]$ " [$\underline{\mu}=0$, a conseq. of circular symmetry]

Background - Random Vectors

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry - i.e. $X \sim X . e^{j \phi}$ in \mathbb{C}^{n}
- Complete characterization: "Covariance matrix $\mathbb{E}\left[X X^{*}\right]$ " [$\underline{\mu}=0$, a conseq. of circular symmetry]
- In general.. a $2 n$-dimensional Real Gaussian.

Background - Random Vectors

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry - i.e. $X \sim X . e^{j \phi}$ in \mathbb{C}^{n}
- Complete characterization: "Covariance matrix $\mathbb{E}\left[X X^{*}\right]$ " [$\underline{\mu}=0$, a conseq. of circular symmetry]
- In general.. a $2 n$-dimensional Real Gaussian.
- No further obvious insights.
- Non-trivial to see it natively as a simple function of X only (without $\operatorname{Re}($.$) and \operatorname{Im}($.$) functions).$

Background - Random Vectors

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry - i.e. $X \sim X . e^{j \phi}$ in \mathbb{C}^{n}
- Complete characterization: "Covariance matrix $\mathbb{E}\left[X X^{*}\right]$ " [$\underline{\mu}=0$, a conseq. of circular symmetry]
- In general.. a $2 n$-dimensional Real Gaussian.
- No further obvious insights.
- Non-trivial to see it natively as a simple function of X only (without $\operatorname{Re}($.$) and \operatorname{Im}($.$) functions).$
- It is shown that it needs three arguments to characterize it completely [Picinbono'1996].
- The mean vector ($\underline{\mu}$)
- The covariance matrix or correlation matrix $\left(K \triangleq \mathbb{E}\left[X X^{*}\right]\right)$
- The pseudo-covar. matrix or relation matrix $\left(C \triangleq \mathbb{E}\left[X X^{\top}\right]\right)$

Background - Random Vectors

- A complex Gaussian Random vector.
- Simplest case: Circular symmetry - i.e. $X \sim X . e^{j \phi}$ in \mathbb{C}^{n}
- Complete characterization: "Covariance matrix $\mathbb{E}\left[X X^{*}\right]$ " [$\underline{\mu}=0$, a conseq. of circular symmetry]
- In general.. a $2 n$-dimensional Real Gaussian.
- No further obvious insights.
- Non-trivial to see it natively as a simple function of X only (without $\operatorname{Re}($.$) and \operatorname{Im}($.$) functions).$
- It is shown that it needs three arguments to characterize it completely [Picinbono'1996].
- The mean vector ($\underline{\mu}$)
- The covariance matrix or correlation matrix $\left(K \triangleq \mathbb{E}\left[X X^{*}\right]\right)$
- The pseudo-covar. matrix or relation matrix $\left(C \triangleq \mathbb{E}\left[X X^{\top}\right]\right)$
- In case of circular Gaussians, $C=0$ and $\underline{\mu}=0$.

Background-Random Matrices

- Random Matrices with Gaussian elements (correlated or uncorrelated elements).
- Columns are mutually independent.
- Each column is Complex Gaussian (correlated elements within)
- Simplification: "Circularly Gaussian".
- Reduces a lot of complexity.
- Wide literature on this assumption.
- Wishart Matrix - a function on matrices:
- If $X \in \mathbb{C}^{n \times n}$, then $Z \triangleq X X^{H}$ is the Wishart matrix of X.
- Wishart Matrix - a function on matrices:
- If $X \in \mathbb{C}^{n \times n}$, then $Z \triangleq X X^{H}$ is the Wishart matrix of X.
- Diagonal elements of Z are:

$$
\begin{aligned}
Z_{i i} & =\| i^{t h} \text { Row of } X \|_{2}^{2} \\
& =\sum_{j=1}^{n}\left|X_{i j}\right|^{2}
\end{aligned}
$$

- Wishart Matrix - a function on matrices:
- If $X \in \mathbb{C}^{n \times n}$, then $Z \triangleq X X^{H}$ is the Wishart matrix of X.
- Diagonal elements of Z are:

$$
\begin{aligned}
Z_{i i} & =\| i^{t h} \text { Row of } X \|_{2}^{2} \\
& =\sum_{j=1}^{n}\left|X_{i j}\right|^{2}
\end{aligned}
$$

- Simple of case of circular symmetry implies, $Z_{i i} \sim c \cdot \chi_{2 n}^{2}$.
- The vector of diagonal elements $w=\left[Z_{i i}\right]_{i=1}^{n}$ is characterizable.
- Wishart Matrix - a function on matrices:
- If $X \in \mathbb{C}^{n \times n}$, then $Z \triangleq X X^{H}$ is the Wishart matrix of X.
- Diagonal elements of Z are:

$$
\begin{aligned}
Z_{i i} & =\| i^{t h} \text { Row of } X \|_{2}^{2} \\
& =\sum_{j=1}^{n}\left|X_{i j}\right|^{2}
\end{aligned}
$$

- Simple of case of circular symmetry implies, $Z_{i i} \sim c \cdot \chi_{2 n}^{2}$.
- The vector of diagonal elements $w=\left[Z_{i i}\right]_{i=1}^{n}$ is characterizable.
- Importance: Characterize effective SNR in MIMO, under various Tx policies.
- Lot of works devoted to such analysis on diagonals of Wishart matrices.
- Practical random matrices are seen to contain non-circularly symmetric elements.
- An active area of research. Many new distributions and models are being proposed in this direction.
- This paper:
- Non-circularly symmetric elements for Random matrix X.
- Characterizing $\operatorname{diag}(Z)$ completely.
- Derived: PDF,CDF and MGF.
- Complex enough expressions with lot of special functions \& multi-level summations, products.

2 OF 4

A New Power Allocation Method

 FORParallel AWGN Channels
IN THE
Finite Block Length Regime

Jung-Hyun Park and Dong-Jo Park

Dept. of Electrical Engg.
Korea Advanced Institute of Science Technology (KAIST), Korea.

Main Arguments

- Achieving Capacity of Parallel Gaussian Channels: Waterfilling.
- Capacity maximization (vs) Achievable-rate maximization
- The block length constraint
- Series of papers by Polyanskiy on achievable rates for finite blocklengths.

The Contributions

- Maximization of latest lower bounds on achievable rate of a Gaussian channel with finite block length.
- For a given power allocation p the achievable rate is [Polyanski etal],

$$
R(p)=C(p)-\sqrt{V(p)} \frac{Q^{-1}(\zeta)}{\sqrt{n}}+\frac{O\left(\log _{b} n\right)}{n}
$$

where, $C(p)$ waterfilling capacity,
ζ is the desired codeword error prob,
n is block length.

- A non-convex optimization formulation using a lowerbound of $R(p)$
- A new modified waterfilling power-allocation scheme.

Optimality of Homogeneous Sensing Range Assignment in Large-Scale Wireless Sensor Network Deployments

Dogu Arifler
Dept of Computer Engg.,
Eastern Mediterranean University, Cyprus.

October 14, 2012

THE PROBLEM

- Sensor deployment scenario
- Coverage problem with total power constraint
- Optimal coverage subject to an overall power constraint in the network.
- Does diversity in sensing ranges of sensor nodes help??
- The deployment(location of sensors) follows a Poisson point process.
- From stochastic geometry results for the popular boolean model, the fraction of area not covered by any sensor is given by: $\exp \left(-\alpha \sum_{i=1} N p_{i} \pi r_{i}^{2}\right)$
- Two optimization problems are formed:

1) Minimizing uncovered area under power constraint,

$$
\begin{array}{r}
\operatorname{minimize} \quad \exp \left(-\alpha \sum_{i} p_{i} \pi r_{i}^{2}\right) \\
\text { subject to } \sum_{i} p_{i}=1, \\
\alpha \sum_{i} p_{i} r_{i}^{\eta} \leq \beta \\
r_{i} \geq 0, p_{i} \geq 0 \text { for } i=1, \ldots, N .
\end{array}
$$

2) Power minimization under coverage area constraint,

$$
\begin{array}{r}
\text { minimize } \quad \alpha \sum_{i} p_{i} r_{i}^{\eta} \\
\text { subject to } \quad \sum_{i} p_{i}=1, \\
\exp \left(-\alpha \sum_{i} p_{i} \pi r_{i}^{2}\right) \leq \theta \\
r_{i} \geq 0, p_{i} \geq 0 \text { for } i=1, \ldots, N .
\end{array}
$$

- From KKT conditions, optimality is achieved when each $r_{i}=r$ for both the problems.

Results

- If all sensors deployed have the same sensing range then
- The uncovered area is minimized for a power constraint
- The overall power is minimized for a coverage constraint
- Optimum sensing range depends on the density of deployment α as well as the parameters β, η and θ

Sub-Modularity and Antenna Selection in MIMO Systems

Rahul Vaze ${ }^{1}$ and Harish Ganapathy ${ }^{2}$

${ }^{1}$ School of Technology and Computer Science,
TIFR, Mumbai
${ }^{2}$ Dept of ECE,
University of Texas, Austin.

SUB-MODULARITY

Definition: [Nemhauser etal., 1958]

Let N be a set and f a real-valued function defined on the set of sub-sets of N. Then f is called sub-modular if:

$$
f(S)+f(T) \geq f(S \cup T)+f(S \cap T), \quad \forall S, T \subseteq N
$$

or, equivalently:

$$
\begin{array}{r}
f(S \cup\{a\})-f(S) \geq f(T \cup\{a\})-f(T) \\
\forall S \subseteq T \subseteq N, \quad \forall a \in N
\end{array}
$$

- Sub-modular functions are studied a while ago.
- Such functions can be optimized (sub-optimally) by simple iterative Greedy algorithms with theoretical guarantees. Hence are of interest.

Receive Antenna Selection Problem:

$$
\underset{R_{L} \subset\left\{1,2, \ldots, N_{r}\right\} ;\left|R_{L}\right|=L}{\operatorname{maximize}} C\left(R_{L}\right)
$$

where,

$$
C\left(R_{L}\right) \triangleq \log \operatorname{det}\left(1+\frac{P}{N_{t}} H_{R_{L}} H_{R_{L}}^{*}\right)
$$

- Select an optimum subset of antennas $R_{L} \subset\left\{1,2, \ldots, N_{t}\right\}$ such that it maximizes the capacity over that set of antennas.
- No elegant solution.
- Bruteforce search requires $\mathcal{O}\left(N_{r}^{L}\right)$ MIMO capacity computations.

Results

(1) Proves that $C\left(R_{L}\right)$ is a monotonic, sub-modular function over sub-sets of $\{1,2, \ldots, N\}$
(2) Proposes a simple greedy iterative search algorithm to solve antenna selection problem.

- Starting with a null-set, at each iteration, add that specific antenna from the remaining antennas, which maximizes the Capacity.
- Stop when L antennas are selected.
(3) Main result:

If S is the set output by above algorithm, and S^{*} is the optimal subset then

$$
C(S) \geq\left(1-\frac{1}{e}\right) C\left(S^{*}\right)
$$

(1) First algorithm with theoretical guaratees.
(0) Extension to 'Relay selection problem' in a network of relays, where the similar approach infact gives precisely optimal performance.

