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Online Categorical Subspace Learning for
Sketching Big Data with Misses Authors: Yannig Shen, Morteza

Mardani and G. B. Giannakis

I Categorical PCA
I low dimensional sketching of high dimensional categorical

data

I Categorical Subspace Learning (CSL) scheme is proposed
that learns the latent structure of the categorial data

I Three generative models are considered.
I Probit

I models data samples as quantized values of
low-dimensional analog signal

I Togit
I models censored data

I Logit
I generalizes logistic regression to unsupervised case



Online Categorical Subspace Learning for
Sketching Big Data with Misses

I Blind Probit Model:

F (J)
probit(x) :=sj if x ∈ (ηj , ηj+1]

for j =0,1, . . . , J − 1

yi,t = F (J)
probit(xi,t + vi,t )

xi,t := u>i ψt , i ∈ Ωt

I Goal is to find {ψt}Tt=1 and U given
{

yi,t
}

I Example:
I The patient’s survival, or, death is a binary response that

depends upon several factors such as age, weight, gender,
as well as the treatment dose and specifications.



Online Categorical Subspace Learning for
Sketching Big Data with Misses

I Blind Tobit Model:

F I
tobit(x) :=


ηu x ≥ ηu
ηl x ≤ ηl
x x ∈ (ηl , ηu).

yi,t = Ftobit(xi,t + vi,t )

xi,t := u>i ψt , i ∈ Ωt .

I Example:
I If the patient dies naturally within the study period, one

knows precisely the survival time. However, if the patient
dies before or after the study, where no accurate data is
collected, only an upper or a lower bound is available on
the patient age.



Online Categorical Subspace Learning for
Sketching Big Data with Misses

I Blind Logit Model:

Flogit(xi,t ) :=Pr(yi,t = s)

=
1

1 + exp((1− 2s)xi,t )
, i ∈ Ωt .

log
Pr(yi,t = sj)

Pr(yi,t = s0)
= ψ>t u(j)

i , j = 1, . . . , J − 1

Pr(yi,t = sj) =
exp(ψ>t u(j)

i )

1 +
∑J−1

k=1 exp(ψ>t u(k)
i )

, j = 1, . . . , J − 1.

I Example:
I The Logit model can predict the survival chance within a

certain period of time.



Online Categorical Subspace Learning for
Sketching Big Data with Misses

I Rank Regularized ML estimation of model parameters Ψ
and U

min
X=UΨ

− logL
(
{yi,τ , i ∈ Ωτ}Tτ=1; U,Ψ

)
+ λ‖X‖∗

I Variational form of nuclear norm

‖X‖∗ = min
{U,Ψ}

1
2

(
‖U‖2F + ‖Ψ‖2F

)
s. to X = UΨ

I Equivalent Rank Regularized ML

min
{U,Ψ}

− logL
(
{yi,τ , i ∈ Ωτ}Tτ=1; U,Ψ

)
+
λ

2

(
‖U‖2F + ‖Ψ‖2F

)
.



Near-Optimal Hybrid Processing for Massive MIMO
Systems via Matrix Decomposition

I Hybrid precoding architecture

I Baseband model before analog RF processing at RX

y = HFRFBs + n

I and after RX post processing

ỹ = WH
B WH

RHFRFBs + WH
B WH

Rn

I How to design the hybrid precoders FB,FR and hybrid
combiners WB,WR?



Near-Optimal Hybrid Processing for Massive MIMO
Systems via Matrix Decomposition

I Conventional approach:

max R(FR,FB,WR,WB)

s.t. ||FRFB||2F = Ns,

FR ∈ FR, WR ∈ WR,

I Proposed approach:
I First learn the conventional precoder F∗ and combiner W∗

via unconstrained optimization
I Then, use matrix decomposition to obtain hybrid precoders

and combiners

min
FR ,FB

||F? − FRFB||F

s.t. ||FRFB||2F = Ns,

FR ∈ FR .

min
WR ,WB

||W? −WRWB||F

s.t. WR ∈ WR .



Near-Optimal Hybrid Processing for Massive MIMO
Systems via Matrix Decomposition

I F∗ found by maximizing the mutual information:

F∗ = max
F

log2

(∣∣∣∣INs +
γ

Ns
HFFHHH

∣∣∣∣) .
I Once FR,FB are found, one can find optimal W∗ as

W? = WMMSE = arg min
W

E [||s−Wy||2]

=

√
P

Ns

(
P
Ns

HFRFBFH
B FH

RHH + σ2INr

)−1

HFRFB.



Tensor Decomposition With Several Block-Hankel
Factors and Application in Blind System
Identification Authors: Frederic V Eeghem, M. Sorenson and L.D. Lathauwer

I Hankel matrix

I Banded Block-Hankel structure



Tensor Decomp. With Several Blk-Hankel Factors
and Application in Blind System Identification

Blind system identification problem

I Consider an LTI system with R inputs and M outputs,
having L + 1 coefficients per input-output channel.

ym(n) =
R∑

r=1

L∑
l=0

hmr (l)sr (n − l) + v(n)

I Goal is to determine hmr (n) based on the observed data
sequence ym(n).



Tensor Decomp. With Several Blk-Hankel Factors
and Application in Blind System Identification

Tensors

I Scalar is a rank-0 tensor (magnitude only)

I Vector is a tensor of rank-1 (magnitude and one direction)

I Matrix is a tensor of rank-2 (magnitude and two directions)

I Triad is a tensor of rank-3 (magnitude and three directions)

and so on...



Tensor Decomp. With Several Blk-Hankel Factors
and Application in Blind System Identification

Canonical Polyadic Decomposition (CPD)
I Decomposition into a sum of rank-1 terms

X =
R∑

r=1

u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r .

I The rank of a tensor X is equal to the minimal number of
rank-1 tensors that yield X in a linear combination.

I The vectors
{

u(n)
r

}
can be stacked as factor matrices

U(n) =
[

u(n)
1 · · · u(n)

R

]
∈ CIn×R,

I Compact representation of tensor X :

X =
[[

U(1),U(2), · · · ,U(N)
]]
.



Tensor Decomp. With Several Blk-Hankel Factors
and Application in Blind System Identification

Uniqueness of Canonical Polyadic Decomposition

The PD of X ∈ CI1×I2×I3
(
X =

[[
U(1),U(2),U(3)]]) is

unique if{
U(3) has full column rank R,
C2
(
U(1))� C2

(
U(2)) has full column rank,

I C2(A) is defined as the k th compound matrix of an I × R
matrix A, which is the

( I
k

)
×
(R

k

)
matrix containing the

determinants of all k × k submatrices of A.



Tensor Decomp. With Several Blk-Hankel Factors
and Application in Blind System Identification

Blind system identification problem

ym(n) =
R∑

r=1

L∑
l=0

hmr (l)sr (n − l) + v(n)

I Generate pseudo-measurements (4th order cumulants)

cm1m2m3m4(l1, l2, l3)

:= Cum
[
y∗m1

(n), ym2(n + l1), y∗m3
(n + l2), ym4(n + l3)

]
=

R∑
r=1

γr

L∑
l=0

hm1r (l)∗hm2r (l + l1)hm3r (l + l2)∗hm4r (l + l3)

I The pseudo-measurements can be rearranged as a
fourth-order tensor

T =
R∑

r=1

γr

L∑
l=0

p(l)∗
r ◦ h(l)

r ◦ h(l)∗
r ◦ h(l)

r



Tensor Decomp. With Several Blk-Hankel Factors
and Application in Blind System Identification

I The pseudo-measurements (cumulants) rearranged as a
fourth-order tensor

T =
R∑

r=1

γr

L∑
l=0

p(l)∗
r ◦ h(l)

r ◦ h(l)∗
r ◦ h(l)

r

where p(l)
r is the r th column of P(l), defined as

P(l) =

 h11(l) · · · h1R(l)
...

. . .
...

hM1(l) · · · hMR(l)

 ∈ CM×R,

I Compact representation of pseudo-measurements T :

T = [[G∗,H,H∗,H]] ,

G =
[

P(0)Γ · · · P(L)Γ
]
∈ CM×R(L+1), Γ = diag(γ)

H =
[

H(0) · · · H(L)
]
∈ CM(2L+1)×R(L+1) (block Hankel)



Tensor Decomp. With Several Blk-Hankel Factors
and Application in Blind System Identification

I Compact representation of pseudo-measurements T :

T = [[G∗,H,H∗,H]] ,

G =
[

P(0)Γ · · · P(L)Γ
]
∈ CM×R(L+1), Γ = diag(γ)

H =
[

H(0) · · · H(L)
]
∈ CM(2L+1)×R(L+1) (block Hankel)

I By unfolding T and rewriting in a matrix form, we get

T =
[
t(1,1), . . . , t(1,M(2L+1)), t(2,1), . . . , t(M,M(2L+1))

]
= (H∗ � H) (G� H∗)T,

I When is the above decomposition unique?



Other Interesting Papers:

I Low-Rank Phase Retrieval

I Robust Distributed Estimation by Networked Agents

I Parameter Estimation in Sensor Networks Under
Probabilistic Censoring

I Matrix Product State for Higher-Order Tensor Compression
and Classification

I Blind Multichannel Deconvolution and Convolutive
Extensions of Canonical Polyadic and Block Term
Decompositions


