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Fast Algorithms for Demixing Sparse Signals From
Nonlinear Observations

Problem statement

yi = g(< ai ,Φw + Ψz >) + ei i = 1, 2, . . .m (1)

where,

x = Φw + Ψz

Φn×n and Ψn×n are orthornormal bases

ai is ith row of Am×n (measurement operator)

g (link function) is either known or unknown non-linear function
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Algorithms

When g is unknown

where,

Ps is s-sparse projection

Remarks-:
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Algorithms

When g is known

Let Θ
′
(x) = g(x)

Γ = [Φ Ψ], t = [w z ]

minimize
t∈R2n

F (t) =
1

m

m∑
i=1

(Θ(aTi Γt)− yia
t
i Γt)

subject to ||t||0 ≤ 2s

Gradient, OF (t) = 1
mΓTAT (g(AΓt)− y)
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Scalable and Flexible Multiview MAX-VAR Canonical
Correlation Analysis

Problem statement- Finding low-dimensional representations from
multiple views corresponding to the same entities, termed as
Canonical Correlation Analysis (CCA)

Consider the word ’Akshay’. It has text and audio representation

A view is a high dimensional representation of an entity in some
feature space

Helpful in data fusion. Integrating information acquired from different
sources
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Mathematical Formulation

Consider L entities have different representation in I views

Xi ∈ RL×Mi is the feature matrix for L entities in ith view

minimize
{Qi}Ii=1,G

I∑
i=1

||XiQi − G||2F

subject to GTG = I

where, G ∈ RL×K , K (� min(Mi , L)) is number of canonical components

The above problem has closed form expression

Solving wrt Qi , Qi = X†iG, X†i = (XT
i Xi )

−1XT
i

Substituting back, estimating G reduces to

maximize
GTG=I

Tr

(
GT

(
I∑

i=1

XiX
†
i

)
G

)

Solution → First K principal eigenvectors of
∑I

i=1XiX
†
i
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Major challenges -:

Implementing the solution to large-scale data

Incorporating structure in Qi

To circumvent the second issue, add regularizer hi (Qi )

hi (Qi ) = µi
2 · ||Qi ||2F

hi (Qi ) = µi
2 · ||Qi ||2,1

hi (Qi ) = µi
2 · ||Qi ||2F + βi · ||Qi ||2,1

hi (Qi ) = 1+(Qi )

The reulting objective,

minimize
{Qi}Ii=1,G

I∑
i=1

||XiQi − G||2F + hi (Qi )

subject to GTG = I

The authors use alternating optimization; solve two subproblems wrt {Qi}
and G
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After r iterations we have Q(r),G(r)

Solving for Q
(r+1)
i

minimize
Qi

||XiQi − G(r)||2F + hi (Qi )

Rewritten as,

minimize
Qi

fi (Qi ,G
(r)) + gi (Qi )

where, fi is continuously differentiable part and gi is non-smooth part of
the objective

Use proximal gradient to solve and get Q
(r+1)
i
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Solving for G(r+1)

minimize
G

I∑
i=1

||XiQ
(r+1)
i − G||2F

subject to GTG = I

Rewritten as,

maximize
GTG=I

Tr

(
GT

(
I∑

i=1

XiQ
(r+1)
i

))

Closed form update can be found using Procrustes projection

G(r+1) → UV T , where, [U, :,V ] = SVD
(∑I

i=1XiQ
(r+1)
i

)
, O(LK 2)
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Adaptive Subspace Signal Detection with Uncertain Partial
Prior Knowledge

Consider the hypothesis testing problem,

H0 : y = d

H1 : y = κs + d

where,

y ∈ Rn is test data, s is known signal with unknown amplitude κ

d is the disturbance signal with low-rank subspace representation

d = Hβ + n

H ∈ RN×L consists of L(< N) independent basis vectors, n follows
N (0, σ2I)
s 6∈ span(H)
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Authors consider the case where H is partially known, i.e.,

Hβ = Hx

where, H ∈ RN×M is an overcomplete dictionary, x is a sparse vector with
sparsity L

We know which columns of H spans the column space of H

But, that information is not completely accurate

May contain erroneous columns or may miss some columns

The likelihood functions under the H0 and H1 hypotheses given
observation y are

p0(β,H, σ2; y) = N (y;Hβ, σ2I)
p1(κ, β,H, σ2; y) = N (y;κs + Hβ, σ2I)
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Under H1, MLE of κ conditioned on H, β is,

κ̂ =
sH(y −Hβ)

sHs

Substituting it in p1 then MLE of noise variance under H1 is,

σ21 =
1

N
||P⊥s y − P⊥s Hβ||2

where, P⊥s = I− s(sHs)−1sH

MLEs of H, β under H1 ,

{Ĥ1, β̂} = arg min||P⊥s y − P⊥s Hβ||2

Under H0,

σ20 =
1

N
||y −Hβ||2

{Ĥ0, β̂} = arg min||y −Hβ||2
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We need to solve sparse recovery problem,

minx ||z− Ax||2

where, z = P⊥s y and A = P⊥s H under H1 and z = y and A = H under H0

Once {H1, β} and {H0, β} are obtained we can substitute them back
to obtain κ and σ2 .

Then perform GLRT
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