Journal Watch TSP-Aug 15 2017

Akshay Kumar

November 18, 2017

Akshay Kumar November 18, 2017 1 / 15

Table of Contents

Paper-1

2 Paper-2

Paper-3

Akshay Kumar November 18, 2017 2 / 15

Fast Algorithms for Demixing Sparse Signals From Nonlinear Observations

Problem statement

$$y_i = g(\langle a_i, \Phi w + \Psi z \rangle) + e_i \qquad i = 1, 2, \dots m$$
 (1)

where,

- $x = \Phi w + \Psi z$
- $\Phi^{n \times n}$ and $\Psi^{n \times n}$ are orthornormal bases
- a_i is ith row of $A^{m \times n}$ (measurement operator)
- g (link function) is either known or unknown non-linear function

Akshay Kumar November 18, 2017 3 / 15

Algorithms

When g is unknown

where,

• \mathcal{P}_s is s-sparse projection

Remarks-:

Akshay Kumar November 18, 2017 4 / 15

Algorithms

- When g is known
- Let $\Theta'(x) = g(x)$
- $\Gamma = [\Phi \ \Psi], \ t = [w \ z]$

$$\begin{array}{ll} \underset{t \in \mathbb{R}^{2n}}{\text{minimize}} & F(t) = \frac{1}{m} \sum_{i=1}^{m} (\Theta(a_i^T \Gamma t) - y_i a_i^t \Gamma t) \\ \text{subject to} & ||t||_0 \le 2s \end{array}$$

• Gradient, $\nabla F(t) = \frac{1}{m} \Gamma^T A^T (g(A\Gamma t) - y)$

Akshay Kumar November 18, 2017 5 / 15

Algorithm 2: Demixing with Hard Thresholding (DHT).

```
Inputs: \Phi, \Psi, A, q, y, s, \eta'.
Outputs: Estimates \hat{x} = \Phi \hat{w} + \Psi \hat{z}, \hat{w}, \hat{z}
Initialization:
(x^0, w^0, z^0) \leftarrow \text{ARBITRARY}, k \leftarrow 0
while k \leq N do
      t^k \leftarrow [w^k; z^k] {forming constituent vector}
     t_1^k \leftarrow \frac{1}{m} \Phi^T A^T (g(Ax^k) - y)

t_2^k \leftarrow \frac{1}{m} \Psi^T A^T (g(Ax^k) - y)
      \nabla F^k \stackrel{m}{\leftarrow} [t_1^k; t_2^k] {forming gradient}
      \begin{array}{l} \tilde{t}^k = t^k - \eta' \nabla F^k \\ [w^k; z^k] \leftarrow \mathcal{P}_{2s} \left( \tilde{t}^k \right) \\ x^k \leftarrow \Phi w^k + \Psi z^k \end{array} \quad \begin{array}{l} \{ \text{gradient update} \} \\ \{ \text{sparse projection} \} \\ \{ \text{estimating } \widehat{x} \} \end{array} 
      k \leftarrow k + 1
end while
```

Return: $(\widehat{w}, \widehat{z}) \leftarrow (w^N, z^N)$

Akshay Kumar November 18, 2017 6 / 15

Scalable and Flexible Multiview MAX-VAR Canonical Correlation Analysis

- Problem statement- Finding low-dimensional representations from multiple views corresponding to the same entities, termed as Canonical Correlation Analysis (CCA)
- Consider the word 'Akshay'. It has text and audio representation
- A view is a high dimensional representation of an entity in some feature space
- Helpful in data fusion. Integrating information acquired from different sources

Akshay Kumar November 18, 2017 7 / 15

Mathematical Formulation

- Consider L entities have different representation in I views
- $\mathbf{X}_i \in \mathbb{R}^{L \times M_i}$ is the feature matrix for L entities in ith view

$$\begin{array}{ll} \underset{\{\mathbf{Q}_i\}_{i=1}^{I},\mathbf{G}}{\text{minimize}} & \sum_{i=1}^{I} ||\mathbf{X}_i \mathbf{Q}_i - \mathbf{G}||_F^2 \\ \text{subject to} & \mathbf{G}^T \mathbf{G} = \mathbb{I} \end{array}$$

where, $G \in \mathbb{R}^{L \times K}$, $K(\ll min(M_i, L))$ is number of canonical components

- The above problem has closed form expression
- Solving wrt \mathbf{Q}_i , $\mathbf{Q}_i = \mathbf{X}_i^{\dagger} \mathbf{G}$, $\mathbf{X}_i^{\dagger} = (\mathbf{X}_i^T \mathbf{X}_i)^{-1} \mathbf{X}_i^T$
- Substituting back, estimating G reduces to

$$\underset{\mathbf{G}^T \mathbf{G} = \mathbb{I}}{\operatorname{maximize}} \quad Tr \left(\mathbf{G}^T \left(\sum_{i=1}^I \mathbf{X}_i \mathbf{X}_i^{\dagger} \right) \mathbf{G} \right)$$

• Solution \rightarrow First K principal eigenvectors of $\sum_{i=1}^{I} \mathbf{X}_{i} \mathbf{X}_{i}^{\dagger}$

Akshay Kumar November 18, 2017

8 / 15

Major challenges -:

- Implementing the solution to large-scale data
- Incorporating structure in \mathbf{Q}_i

To circumvent the second issue, add regularizer $h_i(\mathbf{Q}_i)$

•
$$h_i(\mathbf{Q}_i) = \frac{\mu_i}{2} \cdot ||\mathbf{Q}_i||_F^2$$

•
$$h_i(\mathbf{Q}_i) = \frac{\mu_i}{2} \cdot ||\mathbf{Q}_i||_{2,1}$$

•
$$h_i(\mathbf{Q}_i) = \frac{\mu_i}{2} \cdot ||\mathbf{Q}_i||_F^2 + \beta_i \cdot ||\mathbf{Q}_i||_{2,1}$$

•
$$h_i(\mathbf{Q}_i) = \mathbf{1}_+(\mathbf{Q}_i)$$

The reulting objective,

minimize
$$\{\mathbf{Q}_i\}_{i=1}^{I}, \mathbf{G}$$
 $\sum_{i=1}^{I} ||\mathbf{X}_i \mathbf{Q}_i - \mathbf{G}||_F^2 + h_i(\mathbf{Q}_i)$ subject to $\mathbf{G}^T \mathbf{G} = \mathbb{I}$

The authors use alternating optimization; solve two subproblems wrt $\{\mathbf{Q}_i\}$ and \mathbf{G}

Akshay Kumar November 18, 2017 9 / 15

After r iterations we have $\mathbf{Q}^{(r)}, \mathbf{G}^{(r)}$

• Solving for $\mathbf{Q}_{i}^{(r+1)}$

minimize
$$||\mathbf{X}_i\mathbf{Q}_i - \mathbf{G}^{(r)}||_F^2 + h_i(\mathbf{Q}_i)$$

Rewritten as.

minimize
$$f_i(\mathbf{Q}_i, \mathbf{G}^{(r)}) + g_i(\mathbf{Q}_i)$$

where, f_i is continuously differentiable part and g_i is non-smooth part of the objective

• Use proximal gradient to solve and get $\mathbf{Q}_i^{(r+1)}$

Akshay Kumar November 18, 2017 10 / 15

• Solving for $\mathbf{G}^{(r+1)}$

$$\begin{aligned} & \underset{\mathbf{G}}{\text{minimize}} & & \sum_{i=1}^{I} ||\mathbf{X}_i \mathbf{Q}_i^{(r+1)} - \mathbf{G}||_F^2 \\ & \text{subject to} & & \mathbf{G}^T \mathbf{G} = \mathbb{I} \end{aligned}$$

Rewritten as,

$$\begin{array}{ll}
\text{maximize} & Tr \left(\mathbf{G}^T \left(\sum_{i=1}^{I} \mathbf{X}_i \mathbf{Q}_i^{(r+1)} \right) \right)
\end{array}$$

Closed form update can be found using Procrustes projection

•
$$\mathbf{G}^{(r+1)} \to UV^T$$
, where, $[U,:,V] = SVD\left(\sum_{i=1}^{I} \mathbf{X}_i \mathbf{Q}_i^{(r+1)}\right)$, $\mathcal{O}(LK^2)$

Akshay Kumar November 18, 2017 11 / 15

Adaptive Subspace Signal Detection with Uncertain Partial Prior Knowledge

• Consider the hypothesis testing problem,

$$H_0: \mathbf{y} = \mathbf{d}$$

 $H_1: \mathbf{y} = \kappa \mathbf{s} + \mathbf{d}$

where,

- $\mathbf{y} \in \mathbb{R}^n$ is test data, \mathbf{s} is known signal with unknown amplitude κ
- d is the disturbance signal with low-rank subspace representation

$$d = H\beta + n$$

- $\mathbf{H} \in \mathbb{R}^{N \times L}$ consists of L(< N) independent basis vectors, \mathbf{n} follows $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbb{I})$
- s ∉ span(H)

Akshay Kumar November 18, 2017

12 / 15

• Authors consider the case where **H** is partially known, i.e.,

$$\mathbf{H}\beta = \mathcal{H}\mathbf{x}$$

where, $\mathcal{H} \in \mathbb{R}^{N \times M}$ is an overcomplete dictionary, \mathbf{x} is a sparse vector with sparsity L

- ullet We know which columns of ${\cal H}$ spans the column space of ${f H}$
- But, that information is not completely accurate
- May contain erroneous columns or may miss some columns
- The likelihood functions under the H_0 and H_1 hypotheses given observation \mathbf{y} are

$$\begin{aligned} & p_0(\beta, \mathbf{H}, \sigma^2; \mathbf{y}) = \mathcal{N}(\mathbf{y}; \mathbf{H}\beta, \sigma^2 \mathbb{I}) \\ & p_1(\kappa, \beta, \mathbf{H}, \sigma^2; \mathbf{y}) = \mathcal{N}(\mathbf{y}; \kappa \mathbf{s} + \mathbf{H}\beta, \sigma^2 \mathbb{I}) \end{aligned}$$

Akshay Kumar November 18, 2017 13 / 15

• Under H_1 , MLE of κ conditioned on \mathbf{H} , β is,

$$\hat{\kappa} = rac{\mathbf{s}^H(\mathbf{y} - \mathbf{H}eta)}{\mathbf{s}^H\mathbf{s}}$$

• Substituting it in p_1 then MLE of noise variance under H_1 is,

$$\sigma_1^2 = \frac{1}{N} || \mathbf{P}_s^{\perp} \mathbf{y} - \mathbf{P}_s^{\perp} \mathbf{H} \boldsymbol{\beta} ||^2$$

where, $\mathbf{P}_{\mathbf{s}}^{\perp} = \mathbb{I} - \mathbf{s}(\mathbf{s}^H\mathbf{s})^{-1}\mathbf{s}^H$

• MLEs of \mathbf{H}, β under H_1 ,

$$\{\hat{\mathbf{H_1}}, \hat{\boldsymbol{\beta}}\} = \arg \, \min \lvert\lvert \mathbf{P}_s^{\perp} \mathbf{y} - \mathbf{P}_s^{\perp} \mathbf{H} \boldsymbol{\beta} \rvert\rvert^2$$

Under H_0 ,

$$\begin{split} \sigma_0^2 &= \frac{1}{N} ||\mathbf{y} - \mathbf{H}\boldsymbol{\beta}||^2 \\ \{\hat{\mathbf{H_0}}, \hat{\boldsymbol{\beta}}\} &= \text{arg min} ||\mathbf{y} - \mathbf{H}\boldsymbol{\beta}||^2 \end{split}$$

Akshay Kumar November 18, 2017 14 / 15

We need to solve sparse recovery problem,

$$min_x ||\mathbf{z} - \mathbf{A}\mathbf{x}||^2$$

where, $\mathbf{z}=\mathbf{P}_s^\perp\mathbf{y}$ and $\mathbf{A}=\mathbf{P}_s^\perp\mathcal{H}$ under H_1 and $\mathbf{z}=\mathbf{y}$ and $\mathbf{A}=\mathcal{H}$ under H_0

- Once $\{\mathbf{H_1},\beta\}$ and $\{\mathbf{H_0},\beta\}$ are obtained we can substitute them back to obtain κ and σ^2 .
- Then perform GLRT

Akshay Kumar November 18, 2017 15 / 15