Journal Watch TSP-Aug 152017

Akshay Kumar

November 18, 2017

Table of Contents

(1) Paper-1
(2) Paper-2
(3) Paper-3

Fast Algorithms for Demixing Sparse Signals From Nonlinear Observations

- Problem statement

$$
\begin{equation*}
y_{i}=g\left(<a_{i}, \Phi_{w}+\Psi_{z}>\right)+e_{i} \quad i=1,2, \ldots m \tag{1}
\end{equation*}
$$

where,

- $x=\Phi w+\Psi_{z}$
- $\Phi^{n \times n}$ and $\Psi^{n \times n}$ are orthornormal bases
- a_{i} is ith row of $A^{m \times n}$ (measurement operator)
- g (link function) is either known or unknown non-linear function

Algorithms

- When g is unknown

```
Algorithm 1: OneShot.
Inputs: \(\Phi, \Psi, A, y, s\).
Outputs: Estimates \(\widehat{x}=\Phi \widehat{w}+\Psi \widehat{z}, \widehat{w} \in K_{1}, \widehat{z} \in K_{2}\)
\(\widehat{x}_{\text {lin }} \leftarrow \frac{1}{m} A^{T} y \quad\) \{form linear estimator \(\}\)
\(b_{1} \leftarrow \Phi^{*} \widehat{x}_{\text {lin }} \quad\) \{forming first proxy \(\}\)
\(\widehat{w} \leftarrow \mathcal{P}_{s}\left(b_{1}\right) \quad\) \{sparse projection\}
\(b_{2} \leftarrow \Psi^{*} \widehat{x}_{\text {lin }} \quad\) \{forming second proxy\}
\(\widehat{z} \leftarrow \mathcal{P}_{s}\left(b_{2}\right) \quad\) \{sparse projection\}
\(\widehat{x} \leftarrow \Phi \widehat{w}+\Psi \widehat{z} \quad\{\) Estimating \(\widehat{x}\}\)
```

where,

- \mathcal{P}_{s} is s-sparse projection

Remarks-:

Algorithms

- When g is known
- Let $\Theta^{\prime}(x)=g(x)$
- $\Gamma=\left[\begin{array}{ll}\Phi & \Psi\end{array}\right], t=\left[\begin{array}{ll}w & z\end{array}\right]$
$\underset{t \in \mathbb{R}^{2 n}}{\operatorname{minimize}} \quad F(t)=\frac{1}{m} \sum_{i=1}^{m}\left(\Theta\left(a_{i}^{T} \Gamma t\right)-y_{i} a_{i}^{t}\ulcorner t)\right.$
subject to $\|t\|_{0} \leq 2 s$
- Gradient, $\nabla F(t)=\frac{1}{m} \Gamma^{T} A^{T}(g(A \Gamma t)-y)$

```
Algorithm 2: Demixing with Hard Thresholding (DHT).
    Inputs: \(\Phi, \Psi, A, g, y, s, \eta^{\prime}\).
    Outputs: Estimates \(\widehat{x}=\Phi \widehat{w}+\Psi \widehat{z}, \widehat{w}, \widehat{z}\)
    Initialization:
    \(\left(x^{0}, w^{0}, z^{0}\right) \leftarrow\) ARBITRARY, \(k \leftarrow 0\)
    while \(k \leq N\) do
        \(t^{k} \leftarrow\left[w^{k} ; z^{k}\right] \quad\) \{forming constituent vector\}
        \(t_{1}^{k} \leftarrow \frac{1}{m} \Phi^{T} A^{T}\left(g\left(A x^{k}\right)-y\right)\)
        \(t_{2}^{k} \leftarrow \frac{1}{m} \Psi^{T} A^{T}\left(g\left(A x^{k}\right)-y\right)\)
        \(\nabla F^{k} \leftarrow\left[t_{1}^{k} ; t_{2}^{k}\right] \quad\) \{forming gradient \}
        \(\tilde{t}^{k}=t^{k}-\eta^{\prime} \nabla F^{k} \quad\) \{gradient update \(\}\)
        \(\left[w^{k} ; z^{k}\right] \leftarrow \mathcal{P}_{2 s}\left(\tilde{t}^{k}\right) \quad\) \{sparse projection\}
        \(x^{k} \leftarrow \Phi w^{k}+\Psi z^{k} \quad\) \{estimating \(\left.\widehat{x}\right\}\)
        \(k \leftarrow k+1\)
    end while
    Return: \((\widehat{w}, \widehat{z}) \leftarrow\left(w^{N}, z^{N}\right)\)
```


Scalable and Flexible Multiview MAX-VAR Canonical Correlation Analysis

- Problem statement- Finding low-dimensional representations from multiple views corresponding to the same entities, termed as Canonical Correlation Analysis (CCA)
- Consider the word 'Akshay'. It has text and audio representation
- A view is a high dimensional representation of an entity in some feature space
- Helpful in data fusion. Integrating information acquired from different sources

Mathematical Formulation

- Consider L entities have different representation in I views
- $\mathbf{X}_{i} \in \mathbb{R}^{L \times M_{i}}$ is the feature matrix for L entities in ith view

$$
\begin{array}{ll}
\underset{\left\{\mathbf{Q}_{i}\right\}_{i=1}^{\prime}, \mathbf{G}}{\operatorname{minimize}} & \sum_{i=1}^{I}\left\|\mathbf{X}_{i} \mathbf{Q}_{i}-\mathbf{G}\right\|_{F}^{2} \\
\text { subject to } & \mathbf{G}^{T} \mathbf{G}=\mathbb{I}
\end{array}
$$

where, $G \in \mathbb{R}^{L \times K}, K\left(\ll \min \left(M_{i}, L\right)\right)$ is number of canonical components

- The above problem has closed form expression
- Solving wrt $\mathbf{Q}_{i}, \mathbf{Q}_{i}=\mathbf{X}_{i}^{\dagger} \mathbf{G}, \mathbf{X}_{i}^{\dagger}=\left(\mathbf{X}_{i}^{T} \mathbf{X}_{i}\right)^{-1} \mathbf{X}_{i}^{T}$
- Substituting back, estimating \mathbf{G} reduces to

$$
\underset{\mathbf{G}^{T} \mathbf{G}=\mathbb{I}}{\operatorname{maximize}} \operatorname{Tr}\left(\mathbf{G}^{T}\left(\sum_{i=1}^{I} \mathbf{X}_{i} \mathbf{X}_{i}^{\dagger}\right) \mathbf{G}\right)
$$

- Solution \rightarrow First K principal eigenvectors of $\sum_{i=1}^{l} \mathbf{X}_{i} \mathbf{X}_{i}^{\dagger}$

Major challenges -:

- Implementing the solution to large-scale data
- Incorporating structure in \mathbf{Q}_{i}

To circumvent the second issue, add regularizer $h_{i}\left(\mathbf{Q}_{i}\right)$

- $h_{i}\left(\mathbf{Q}_{i}\right)=\frac{\mu_{i}}{2} \cdot\left\|\mathbf{Q}_{i}\right\|_{F}^{2}$
- $h_{i}\left(\mathbf{Q}_{i}\right)=\frac{\mu_{i}}{2} \cdot\left\|\mathbf{Q}_{i}\right\|_{2,1}$
- $h_{i}\left(\mathbf{Q}_{i}\right)=\frac{\mu_{i}}{2} \cdot\left\|\mathbf{Q}_{i}\right\|_{F}^{2}+\beta_{i} \cdot\left\|\mathbf{Q}_{i}\right\|_{2,1}$
- $h_{i}\left(\mathbf{Q}_{i}\right)=\mathbf{1}_{+}\left(\mathbf{Q}_{i}\right)$

The reulting objective,

$$
\begin{array}{ll}
\underset{\left\{\mathbf{Q}_{i}\right\}_{i=1}^{\prime}, \mathbf{G}}{\operatorname{minimize}} & \sum_{i=1}^{\prime}\left\|\mathbf{X}_{i} \mathbf{Q}_{i}-\mathbf{G}\right\|_{F}^{2}+h_{i}\left(\mathbf{Q}_{i}\right) \\
\text { subject to } & \mathbf{G}^{T} \mathbf{G}=\mathbb{I}
\end{array}
$$

The authors use alternating optimization; solve two subproblems wrt $\left\{\mathbf{Q}_{i}\right\}$ and \mathbf{G}

After r iterations we have $\mathbf{Q}^{(r)}, \mathbf{G}^{(r)}$

- Solving for $\mathbf{Q}_{i}^{(r+1)}$

$$
\underset{\mathbf{Q}_{i}}{\operatorname{minimize}}\left\|\mathbf{X}_{i} \mathbf{Q}_{i}-\mathbf{G}^{(r)}\right\|_{F}^{2}+h_{i}\left(\mathbf{Q}_{i}\right)
$$

- Rewritten as,

$$
\underset{\mathbf{Q}_{i}}{\operatorname{minimize}} f_{i}\left(\mathbf{Q}_{i}, \mathbf{G}^{(r)}\right)+g_{i}\left(\mathbf{Q}_{i}\right)
$$

where, f_{i} is continuously differentiable part and g_{i} is non-smooth part of the objective

- Use proximal gradient to solve and get $\mathbf{Q}_{i}^{(r+1)}$
- Solving for $\mathbf{G}^{(r+1)}$

$$
\begin{array}{ll}
\underset{\mathbf{G}}{\operatorname{minimize}} & \sum_{i=1}^{l}\left\|\mathbf{X}_{i} \mathbf{Q}_{i}^{(r+1)}-\mathbf{G}\right\|_{F}^{2} \\
\text { subject to } & \mathbf{G}^{T} \mathbf{G}=\mathbb{I}
\end{array}
$$

- Rewritten as,

$$
\underset{\mathbf{G}^{T} \mathbf{G}=\mathbb{I}}{\operatorname{maximize}} \operatorname{Tr}\left(\mathbf{G}^{T}\left(\sum_{i=1}^{I} \mathbf{X}_{i} \mathbf{Q}_{i}^{(r+1)}\right)\right)
$$

- Closed form update can be found using Procrustes projection
- $\mathbf{G}^{(r+1)} \rightarrow U V^{T}$, where, $[U,:, V]=\operatorname{SVD}\left(\sum_{i=1}^{l} \mathbf{X}_{i} \mathbf{Q}_{i}^{(r+1)}\right), \mathcal{O}\left(L K^{2}\right)$

Adaptive Subspace Signal Detection with Uncertain Partial Prior Knowledge

- Consider the hypothesis testing problem,

$$
\begin{aligned}
& H_{0}: \mathbf{y}=\mathbf{d} \\
& H_{1}: \mathbf{y}=\kappa \mathbf{s}+\mathbf{d}
\end{aligned}
$$

where,

- $\mathbf{y} \in \mathbb{R}^{n}$ is test data, \mathbf{s} is known signal with unknown amplitude κ
- d is the disturbance signal with low-rank subspace representation

$$
\mathbf{d}=\mathbf{H} \beta+\mathbf{n}
$$

- $\mathbf{H} \in \mathbb{R}^{N \times L}$ consists of $L(<N)$ independent basis vectors, \mathbf{n} follows $\mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbb{I}\right)$
- $\mathbf{s} \notin \operatorname{span}(\mathbf{H})$
- Authors consider the case where \mathbf{H} is partially known, i.e.,

$$
\mathbf{H} \beta=\mathcal{H} \mathbf{x}
$$

where, $\mathcal{H} \in \mathbb{R}^{N \times M}$ is an overcomplete dictionary, x is a sparse vector with sparsity L

- We know which columns of \mathcal{H} spans the column space of \mathbf{H}
- But, that information is not completely accurate
- May contain erroneous columns or may miss some columns
- The likelihood functions under the H_{0} and H_{1} hypotheses given observation y are

$$
\begin{aligned}
& p_{0}\left(\beta, \mathbf{H}, \sigma^{2} ; \mathbf{y}\right)=\mathcal{N}\left(\mathbf{y} ; \mathbf{H} \beta, \sigma^{2} \mathbb{I}\right) \\
& p_{1}\left(\kappa, \beta, \mathbf{H}, \sigma^{2} ; \mathbf{y}\right)=\mathcal{N}\left(\mathbf{y} ; \kappa \mathbf{s}+\mathbf{H} \beta, \sigma^{2} \mathbb{I}\right)
\end{aligned}
$$

- Under H_{1}, MLE of κ conditioned on \mathbf{H}, β is,

$$
\hat{\kappa}=\frac{\mathbf{s}^{H}(\mathbf{y}-\mathbf{H} \beta)}{\mathbf{s}^{H} \mathbf{s}}
$$

- Substituting it in p_{1} then MLE of noise variance under H_{1} is,

$$
\sigma_{1}^{2}=\frac{1}{N}\left\|\mathbf{P}_{s}^{\perp} \mathbf{y}-\mathbf{P}_{s}^{\perp} \mathbf{H} \beta\right\|^{2}
$$

where, $\mathbf{P}_{s}^{\perp}=\mathbb{I}-\mathbf{s}\left(\mathbf{s}^{H} \mathbf{s}\right)^{-1} \mathbf{s}^{H}$

- MLEs of \mathbf{H}, β under H_{1},

$$
\left\{\hat{\mathbf{H}_{\mathbf{1}}}, \hat{\beta}\right\}=\arg \min \left\|\mathbf{P}_{s}^{\perp} \mathbf{y}-\mathbf{P}_{s}^{\perp} \mathbf{H} \beta\right\|^{2}
$$

Under H_{0},

$$
\begin{aligned}
& \sigma_{0}^{2}=\frac{1}{N}\|\mathbf{y}-\mathbf{H} \beta\|^{2} \\
& \left\{\hat{\mathbf{H}}_{\mathbf{0}}, \hat{\beta}\right\}=\arg \min \|\mathbf{y}-\mathbf{H} \beta\|^{2}
\end{aligned}
$$

We need to solve sparse recovery problem,

$$
\min _{x}\|\mathbf{z}-\mathbf{A} \mathbf{x}\|^{2}
$$

where, $\mathbf{z}=\mathbf{P}_{s}^{\perp} \mathbf{y}$ and $\mathbf{A}=\mathbf{P}_{s}^{\perp} \mathcal{H}$ under H_{1} and $\mathbf{z}=\mathbf{y}$ and $\mathbf{A}=\mathcal{H}$ under H_{0}

- Once $\left\{\mathbf{H}_{\mathbf{1}}, \beta\right\}$ and $\left\{\mathbf{H}_{\mathbf{0}}, \beta\right\}$ are obtained we can substitute them back to obtain κ and σ^{2}.
- Then perform GLRT

