
Journal Watch:

IEEE TIT, March, 2017 and IEEE TSP, June
15, 2017

Saurabh Khanna,
Signal Processing for Communication Lab, ECE, IISc



High Dimensional Estimation of Structured
Signals From Non-Linear Observations With
General Convex Loss Functions Authors: Martin Genzel

I Recovery of structured signals from a convex set K ⊂ Rn.
I Non-linear observations:

yi := f (〈ai , x0〉) + ε, i = 1, . . .,m,

where ai ∼ N (0,Σ) are independent mean-zero Gaussian vectors.
I f plays the role of non-linearity.
I Key Idea: Non linearity treated as noise which disturbs a linear measurement

process.
I Generalized estimator:

min
x∈Rn

1
2m

m∑
i=1

(ỹi − 〈ai , x〉)2 s.t. x ∈ K .

I Question: Can the above estimator still work? (stably recover x0?)

I Answer depends on quantities like:.
I Global Gaussian width of a set K :

w(K ) := E[supx∈K 〈g, x〉], g ∼ N (0, I).

I Local Gaussian width of a set K :
wt (L) := w(L ∩ tBn

2) = E[supx∈L∩tBn
2
〈g, x〉], t ≥ 0.
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I and answer also depends on entities like...

µ :=E[f (g) · g],

σ2 :=E[(f (g)− µg)2],

η2 :=E[(f (g)− µg)2 · g2]

µ models the correlation between linear and non-linaer model. σ2, η2 model the
variance between them.

I Also, the loss function L should be well beahaved (continuously diffrentiable, L′

Lipschitz cont., convex in first argument).
If m > C.w(K − µx0)

2, then

‖x̂ − µx0‖ ≤ Cσ,η ·
((

w(K − µx0)
2

m

)1/4

+ ε

)
.

I An improved result: If m > wt (K − µx0)
2, then

‖x̂ − µx0‖ ≤ C ·
(
σ·
√

dt (K−µx0)+η√
m

+ ε

)
.



A Nonconvex Splitting Method for Symmetric
Nonnegative Matrix Factorization: Convergence
Analysis and Optimality Authors: Songtao Lu et al., Iowa St. Univ.

I Symmetrix Nonnegative Matrix Factorization (SymNMF):
Decompose given PSD matrix Z as Z = XXT where X is componentwise
nonnegative.

I Proposes algorithm with is capable of convergence to the set of KKT points with
a provable global convergence rate.

I Key idea is to relax the symmetry constraint and enforce it at a slower rate.
I Conventional approach:

min
X=Y,Y≥0

1
2
||X− XYT ||2F

I Reformulated problem:

min
X,Y

1
2
||X− XYT ||2F s.t. Y ≥ 0,X = Y, ||Yi ||22 ≤ τ,∀i.

I For τ sufficiently large (depending on Z), the above two problems have identical
KKT points !.

I Proposes a primal dual algorithm for the reformulated problem with an additional
proximal penalty with variable stepsize. This results in vastly improved
convergence guarantees.



The β model - Maximum likelihood, Cramér Rao
Bounds, and Hypothesis Testing Authors: Johan Walhstrom,

Arye Nehorai and others

I β-models belong to the class of exponential random graph models (ERGMs or
p∗ models).

I Random graph models are useful in analysis work (realistic, tractable models are
need of the hour).

I ERGMs are popular as their probability distribution can be specified in terms of
graph attributes such as max degree, etc.

I In practical problems, random graphs must reflect/incorporate some exogenous
information.

Exohenous information available in two forms:
I Nodal covariates - gender, status etc.
I Dyadic covariates - age difference, spatial distance

Random graphs with nodal covariates are modelled as stochastic block models.

I β model is capable of incorporating covariates on a graph-level. This allows us to
perform regression with a random graph as the dependent variable.



The β model - Maximum likelihood, Cramér Rao
Bounds, and Hypothesis Testing Authors: Johan Walhstrom,

Arye Nehorai and others

I The undirected β model

pij =
eβi+βj

1 + eβi+βj

I The directed β model

pij =
eαi+βj

1 + eαi+βj

I The covariate based β model

pij (x) =
eα

ᵀ
i x+β

ᵀ
j x

1 + eα
ᵀ
i x+β

ᵀ
j x

The probability depends on both the 2K regression coefficients αi and βj , and
the K covariates x = [x1, . . . , xK ]

T , representing e.g., time, space, or other
variables describing the state of the network. Here, αi,k and βi,k describe the
effect that the k th covariate has on the tendency of the i th node to form edges
with other nodes.

I Cramér Rao bounds are derived and hypothesis testing framework is set up for
all the above models.



Quantitative Recovery Conditions for Tree-Based
Compressive Sensing Authors: Coralia Cartis and Andrew Thompson,

Univ. of Oxford, U.K.

I Wavelet representations have a multiscale tree structure. (wavelet coefficients
have tree like nested sparsity structure)

I Derives explicit sufficient conditions for exact and stable recovery structured
signal from noisless and noisy compressive linear measurements.

I Decoder is Iterative Tree Projection (ITP) algorithm:

min
x∈Rn

1
2
||y− Ax||22 subject to supp(x) ∈ Tk ,

where Tk is the set of all k -tree sparse vectors in Rn.

I Surprisingly or not surprisingly, we need to only ensure that

k
m
→ ρ as (k ,m, n)→∞.

if the measurement map A is Gaussian distributed.

I Tree based RIP, RIP constants are defined and characterized.
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