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High Dimensional Estimation of Structured
Signals From Non-Linear Observations With
General Convex Loss Functions authors: Martin Genzel

>
>

Recovery of structured signals from a convex set K C R”.
Non-linear observations:

yi = f({aj, X)) +¢, i=1,...,m,
where a; ~ N(0, ) are independent mean-zero Gaussian vectors.
f plays the role of non-linearity.

Key Idea: Non linearity treated as noise which disturbs a linear measurement
process.

Generalized estimator:

m
min o= > (7 — (@, x)? stxeK.
i=1

»> Question: Can the above estimator still work? (stably recover xy?)

» Answer depends on quantities like:.

> Global Gaussian width of a set K:
w(K) := E[supyex (9, %)), g~ N(0,)).
> Local Gaussian width of a set K:
wi(L) = w(L N tB]) = Elsupyc g (9 X)), 120,
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» and answer also depends on entities like...
u=E[f(g) - 9],
o? :=E[(f(g) — ng)?].
n? =E[(f(g) — ng)® - ¢°]

1 models the correlation between linear and non-linaer model. o2, n2 model the
variance between them.

> Also, the loss function £ should be well beahaved (continuously diffrentiable, c
Lipschitz cont., convex in first argument).

If m> C.w(K — uxg)?, then

. w(K — uxg)2\
1% — pxol| < Con - (((“)) ve).

m
> Animproved result: If m > wy(K — uxo)?, then

N o-\/di(K—
1% — uxoll < C- (7V(fm”+) .



A Nonconvex Splitting Method for Symmetric
Nonnegative Matrix Factorization: Convergence
AnalySiS and Optlmallty Authors: Songtao Lu et al., lowa St. Univ.

>

Symmetrix Nonnegative Matrix Factorization (SymNMF):
Decompose given PSD matrix Z as Z = XX where X is componentwise
nonnegative.

Proposes algorithm with is capable of convergence to the set of KKT points with
a provable global convergence rate.

Key idea is to relax the symmetry constraint and enforce it at a slower rate.
Conventional approach:
. 1
min  —||X - XYT|2
X=Y,Y>0 2

Reformulated problem:

gip JIX-XYTIE SLY 20X =Y, [V|E <7V

For 7 sufficiently large (depending on Z), the above two problems have identical
KKT points .

Proposes a primal dual algorithm for the reformulated problem with an additional
proximal penalty with variable stepsize. This results in vastly improved
convergence guarantees.



The 5 model - Maximum likelihood, Cramér Rao
Bounds, and HypotheSiS Testing Authors: Johan Walhstrom,

Arye Nehorai and others

> [3-models belong to the class of exponential random graph models (ERGMs or
p* models).

» Random graph models are useful in analysis work (realistic, tractable models are
need of the hour).

» ERGNMs are popular as their probability distribution can be specified in terms of
graph attributes such as max degree, etc.

» In practical problems, random graphs must reflect/incorporate some exogenous
information.

Exohenous information available in two forms:
» Nodal covariates - gender, status etc.
» Dyadic covariates - age difference, spatial distance
Random graphs with nodal covariates are modelled as stochastic block models.

»> 3 model is capable of incorporating covariates on a graph-level. This allows us to
perform regression with a random graph as the dependent variable.
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» The undirected 8 model

eﬁﬁ-ﬂj
Pi= 375
1+ efithi
» The directed 5 model
eitBi
P e
» The covariate based 3 model
ea;rx+BjTX
pjj(x) = - eafTHB"TX

The probability depends on both the 2K regression coefficients «; and 3;, and
the K covariates x = [xy, ..., xk]7, representing e.g., time, space, or other
variables describing the state of the network. Here, a; x and 3; x describe the
effect that the kth covariate has on the tendency of the ith node to form edges
with other nodes.

» Cramér Rao bounds are derived and hypothesis testing framework is set up for
all the above models.



Quantitative Recovery Conditions for Tree-Based
Com preSSive SenSing Authors: Coralia Cartis and Andrew Thompson,
Univ. of Oxford, U.K.

> Wavelet representations have a multiscale tree structure. (wavelet coefficients
have tree like nested sparsity structure)

> Derives explicit sufficient conditions for exact and stable recovery structured
signal from noisless and noisy compressive linear measurements.

» Decoder is Iterative Tree Projection (ITP) algorithm:

min 1||y — Ax||2 subject to supp(x) € Tk,
xeRrR" 2

where Ty is the set of all k-tree sparse vectors in R".

» Surprisingly or not surprisingly, we need to only ensure that
k
™ — p as (k,m,n) — oo.

if the measurement map A is Gaussian distributed.

» Tree based RIP, RIP constants are defined and characterized.
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