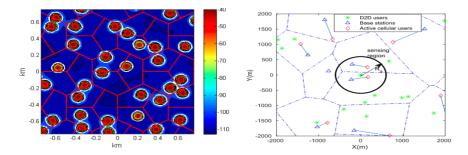
### IEEE Transactions on Wireless Communications November 2016 issues

Ashok Bandi

SPC Lab, Dept. ECE, IISc


November 26, 2016

# Spatial Spectrum Sensing-Based Device-to-Device Cellular Networks

Authors: CHao Chen, Lingjia Liu, Thomas Novlan, John D. Matyjas, Boon Loong Ng, and Jianzhong Zhang

**Goal:** Analyze spatial spectrum sensing (SSS) opportunities in D2D cellular networks (D2D-CN).

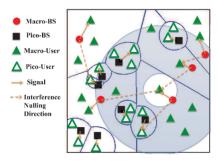
RF heat map and System model:



**Objective:** 

$$\begin{aligned} \max R_n (= w_c R_c + (1 - w_c) R_d \text{ or } R_p) \\ \text{Subject to } \overline{P_f} < \overline{P_f^*} \end{aligned}$$

 $R_c$  and  $R_d$  are spatially averaged spectral efficiency of cellular and D2D users, and  $\overline{P_f}$  is probability of false alarm.


### **Contributions:**

- Introduced SSS in D2D-CN and derived analytical expression for probability of detection and false alarm for SSS in HPPP wireless networks.
- Optimal sensing radius for SSS to maximize the overall network throughput.
- Analytical expressions for optimal performance of SSS under following power allocation strategies
  - constant power allocation at all cellular and D2D transmitter
  - channel inversion at cellular and constant power at D2D transmitters.

User-Centric Interference Nulling in Downlink Multi-Antenna Heterogeneous Networks Authors: Ying Cui, Yueping Wu, Dongdong Jiang, and Bruno Clerck

### Goal: System model

- Macro-BSs, pico-BSs and users are deployed according to PPP with different intensities.
- All the macro and pico stations are divided into two tiers.
- Each user is associated with one BS which provides long term average received signal power.
- Ecah BS uses TDMA for scheduling its users, hence no intra cell interference. **Performance metric** 
  - Coverage probability  $s(\beta) \triangleq \Pr(SIR < \beta)$



### **Contributions:**

- User centric interference nulling scheme
  - SIR of typical user experience following interferences
    - residual aggregated interference from its potential IN macro-BSs
    - aggregated interference from interfering macro-BSs which are not its potential IN macro-BSs.
    - Aggregated interference from all interfering pico-BSs
  - Macro-BS uses ZFBF to cancell interference to  $K_l$  IN users and boosts signal to its scheduled users
  - Pico-BS uses MRT precoder to serve its users.
- Asymptotic outage probability analysis when  $\beta \to 0$  for low and high SIR region: 1) analysis 2) Optimization problem
- Asymptotic coverage probability analysis when  $\beta \rightarrow 0$  for low and high SIR region: 1) analysis 2) Optimization problem

# On Downlink Resource Allocation for SWIPT in Small Cells in a Two-Tier HetNet

Authors: Sudha Lohani, Ekram Hossain, and Vijay K. Bhargava

**Goal:** To jointly optimize achievable throughput and energy harvesting rate of small cell users.

### System model

- Downlink two-tier Hetnet. UEs associated to SBS are capable of energy harvesting.
- Flexible interference at the Macro cell users. EH and ID phase of all SUEs are synchronized.

### Resource allocation for time switching approach

$$\max_{\mathsf{P}_{\mathsf{E}},\mathsf{P}_{\mathsf{I}},\alpha_{\mathsf{I}},\alpha_{\mathsf{E}}} \sum_{s=1}^{S} \left( w_{s,l} \frac{R_s - R_{tar}}{R_{tar}} + w_{s,\mathsf{E}} \frac{E_s - E_{tar}}{E_{tar}} \right)$$

Subject to 1) binary constraint on  $\alpha_l$  and  $\alpha_E$  2) either in EH or ID mode but not both 3) min and max rate constraints of EH and throughput rate.

- Above problem is non-convex (difference of concave (DC) functions) with combinatorial constraints. Linearizes/convexifies the constraints and solves the DC function iteratively using MM procedure.
- Similarly solves for the power splitting approach.

## Buffer-Aided Diamond Relay Network With Block Fading and Inter-Relay Interference

Authors: Renato Simoni, Vahid Jamali, Nikola Zlatanov, Robert Schober, Laura Pierucci and Romano Fantacci

**Goal:** Optimal scheduling of the transmission modes over time and investigate the achievable average rate.

### System model:

- Half duplex buffer aided diamond relay network and unlimited-size buffers at relay.
- No direct link, one relay can transmit while the other relay is receiving and flat block fading on links.
- CSI is available at all nodes and DPC is employed to cancel inter relay interference.

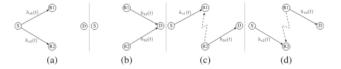



Fig. 1. The four possible transmission modes in the half-duplex diamond relay network are illustrated.

Ashok Bandi (SPC Lab, IISc) IEEE Transactions on Wireless Communicatio

Rate maximization problem

$$\max_{q_k(t),\alpha(t),\beta(t)}\overline{C_{1d}}+\overline{C_{2d}}$$

subject to 
$$\sum\limits_{i=1}^{4}q_k(t)=$$
 1,  $q_k(t)\in\{0,1\}$ ,  $0\leq lpha(t), eta(t)\leq 1$   
Contribution:

- Optimal mode selection protocol (*BaD*) to maximize the average transmitted by relays without delay constraints and with DPC coding.
- Delay limited BaD protocol
- BaD protocol for SIC instead of DPC coding for inter-relay interference cancellation