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Jian Wang and Byonghyo Shim

@ A vector x € RM is k—sparse if it has k nonzero coordinates.
Thatis, ||x|lo:=|{i | xi #0} =k < M

@ One of the central problems in CS is that of reconstructing an
unknown sparse vector x € RM from the linear measurements

y = (<X7 ¢1>7 SR <X7 ¢M>) € R™

@ There are many greedy algorithms to solve the above problem.
Among all, OMP is most popular algorithm

@ Tropp and Gilbert showed that when the measurement matrix
® is generated i.i.d. at random, and the measurement size is
on the order of K'log M, OMP ensures the accurate recovery
of every fixed K-sparse signal with overwhelming probability

@ Davenport and Wakin showed that OMP ensures exact

reconstruction of any K —sparse signal under §,1 < —%~
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@ Recently, it has been shown by Zhang that OMP recovers any
K —sparse signal with 30K iterations under d31x < %

Theorem

Let x € RM be any K—sparse signal and let ® be the measurement
matrix satisfying the RIP of order |(c + 1)K| . Then if ¢ satisfies

4146 1 )
c> (1_5) |Og(2 — M)7Where5 = 5L(C+1)KJa

OMP perfectly recovers the signal x from the measurements
y = &x.

@ it requires 30K iterations to recover K—sparse signals with
031k = % in Zhang's result. Whereas, it requires only [15.4K]

iterations in the present result

@ With high probability, OMP., can recover K—sparse signals in
[2.8K]| iterations when the number of random Gaussian
measurements is on the order of k log(4)




Gongguo Tang and Arye Nehorai

o A vector x =[x/, x5 , ... ,xpT T e R with i*" block

x; € R", is called block k—sparse if x; has nonzero Euclidean
norm for at most k indices i

@ Block-Sparse Basis Pursuit (BS-BP):
minzeree [|z]|p1 5.t ly — Az[2 <€
@ Block-Sparse Dantzig selector (BS-DS):
mingerme ||2]|p1 5.t |AT(y — AZ)||boo < 1

@ Block-Sparse LASSO estimator (BS-LASSO):

. 1
min,egne EHY — Az||3 + | z]| b1




Definition

For s € [1, p] and matrix A € R™*"P define

z|

W (Q,8) = Min,. |21 /lzllbee<s ” T where Q is either Aor AT A

Theorem

| \

Suppose x is k—block sparse satisfying y = Ax + w, and the noise
w satisfies ||w|l2 <€, [|[ATw||poo < 1, and

AT wWl|oo < ku, k € (0,1), for the BS-BP, the BS-DS, and the
BS-LASSO, respectively. We have,

2¢
% — X|lpos < —— for the BS-BP,
|% — x| poo < W (AL 2K) or the
. 2
“X — XHbOO S m, for the BS—DS, and,
1+ k)
% = xllso0 < — LR for the BS-LASSO,
boo (AT A, £57)




Chao-Kai Wen, Jun Zhang, Kai-Kit Wong, Jung-Chieh Chen and Chau Yuen

@ The authors have considered the following sparse recovery
problem in the case of noisy measurements:

y=®x+ow

where w is assumed to be the standard complex Gaussian
noise vector and o is a noise magnitude

The measurement matrix was constructed by concatenating
several randomly orthogonal bases, which they refer to as
structurally orthogonal matrices

The following LASSO algorithm used for signal estimation:

) 1
x = argmlnxecM{)\Hy — ox||3 + ||X”1}

Analytically they proved that the structurally orthogonal
matrices are at least as good as their i.i.d. Gaussian
counterparts 6/9



Hamid Palangi, Rabab Ward and Li Deng

@ One of the central problem in CS is finding the sparse solution
vectors for multiple measurement vectors (MMV)

@ In this paper, the authors relaxed the joint sparsity condition
and assumed that the sparse vectors are depend on each
other, but this dependency is assumed unknown

@ They proposed the two step greed reconstruction algorithm
for finding the dependencies between the sparse vectors and
update their nonzero locations

@ They showed that the proposed method significantly
outperforms the general MMV solver (the Simultaneous
Orthogonal Matching Pursuit (SOMP)) and a number of the
model-based Bayesian methods

@ The proposed method is a data-driven method, it is only
applicable when training data is available 779




@ Deterministic Cram er-Rao Bound for Strictly Non-Circular
Sources and Analytical Analysis of the Achievable Gains by J.
Steinwandt, et.al.

@ New Sparse-Promoting Prior for the Estimation of a Radar
Scene with Weak and Strong Targets by M. Lasserre, et.al.

@ Bayesian Learning of Degenerate Linear Gaussian State Space
Models Using Markov Chain Monte Carlo by P. Bunch, et.al.
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