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Exact Recovery of Sparse Signals Using Orthogonal
Matching Pursuit: How Many Iterations Do We Need?
Jian Wang and Byonghyo Shim

A vector x ∈ RM is k−sparse if it has k nonzero coordinates.
That is, ‖x‖0 := |{i | xi 6= 0}| = k < M

One of the central problems in CS is that of reconstructing an
unknown sparse vector x ∈ RM from the linear measurements
y = (〈x , φ1〉, . . . , 〈x , φM〉) ∈ Rm

There are many greedy algorithms to solve the above problem.
Among all, OMP is most popular algorithm

Tropp and Gilbert showed that when the measurement matrix
Φ is generated i.i.d. at random, and the measurement size is
on the order of K log M, OMP ensures the accurate recovery
of every fixed K -sparse signal with overwhelming probability

Davenport and Wakin showed that OMP ensures exact
reconstruction of any K−sparse signal under δk+1 <

1
3
√
k
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Recently, it has been shown by Zhang that OMP recovers any
K−sparse signal with 30K iterations under δ31k <

1
3

Theorem

Let x ∈ RM be any K−sparse signal and let Φ be the measurement
matrix satisfying the RIP of order b(c + 1)Kc . Then if c satisfies

c ≥ −4(1 + δ)

1− δ
log

(
1

2
−
√

δ

2 + 2δ

)
,where δ = δb(c+1)Kc,

OMPck perfectly recovers the signal x from the measurements
y = Φx.

it requires 30K iterations to recover K−sparse signals with
δ31k = 1

3 in Zhang’s result. Whereas, it requires only d15.4Ke
iterations in the present result

With high probability, OMPck can recover K−sparse signals in
d2.8Ke iterations when the number of random Gaussian
measurements is on the order of k log(Mk ) 3 / 9



Semidefinite Programming for Computable Performance
Bounds on Block-Sparsity Recovery
Gongguo Tang and Arye Nehorai

A vector x = [xT
1 , x

T
2 , . . . , x

T
p ]T ∈ Rnp, with i th block

xi ∈ Rn, is called block k−sparse if xi has nonzero Euclidean
norm for at most k indices i

Block-Sparse Basis Pursuit (BS-BP):

minz∈Rnp ‖z‖b1 s.t. ‖y − Az‖2 ≤ ε

Block-Sparse Dantzig selector (BS-DS):

minz∈Rnp ‖z‖b1 s.t. ‖AT (y − Az)‖b∞ ≤ µ

Block-Sparse LASSO estimator (BS-LASSO):

minz∈Rnp
1

2
‖y − Az‖22 + µ‖z‖b1
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Definition

For s ∈ [1, p] and matrix A ∈ Rm×np, define

wγ(Q, s) = minz: ‖z‖b1/‖z‖b∞≤s
‖Qz‖γ
‖z‖b∞

, where Q is either A or ATA.

Theorem

Suppose x is k−block sparse satisfying y = Ax + w, and the noise
w satisfies ‖w‖2 ≤ ε, ‖ATw‖b∞ ≤ µ, and
‖ATw‖∞ ≤ kµ, k ∈ (0, 1), for the BS-BP, the BS-DS, and the
BS-LASSO, respectively. We have,

‖x̂ − x‖b∞ ≤
2ε

w2(A, 2k)
, for the BS-BP,

‖x̂ − x‖b∞ ≤
2µ

wb∞(ATA, 2k)
, for the BS-DS, and,

‖x̂ − x‖b∞ ≤
(1 + k)µ

wb∞(ATA, 2k
1−k )

, for the BS-LASSO.
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On Sparse Vector Recovery Performance in Structurally
Orthogonal Matrices via LASSO
Chao-Kai Wen, Jun Zhang, Kai-Kit Wong, Jung-Chieh Chen and Chau Yuen

The authors have considered the following sparse recovery
problem in the case of noisy measurements:

y = Φx + σw

where w is assumed to be the standard complex Gaussian
noise vector and σ is a noise magnitude
The measurement matrix was constructed by concatenating
several randomly orthogonal bases, which they refer to as
structurally orthogonal matrices
The following LASSO algorithm used for signal estimation:

x ′ = argminx∈CM

{
1

λ
‖y − Φx‖22 + ‖x‖1

}
Analytically they proved that the structurally orthogonal
matrices are at least as good as their i.i.d. Gaussian
counterparts 6 / 9



Distributed Compressive Sensing: A Deep Learning
Approach
Hamid Palangi, Rabab Ward and Li Deng

One of the central problem in CS is finding the sparse solution
vectors for multiple measurement vectors (MMV)

In this paper, the authors relaxed the joint sparsity condition
and assumed that the sparse vectors are depend on each
other, but this dependency is assumed unknown

They proposed the two step greed reconstruction algorithm
for finding the dependencies between the sparse vectors and
update their nonzero locations

They showed that the proposed method significantly
outperforms the general MMV solver (the Simultaneous
Orthogonal Matching Pursuit (SOMP)) and a number of the
model-based Bayesian methods

The proposed method is a data-driven method, it is only
applicable when training data is available 7 / 9
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