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Data Recovery and Subspace Clustering from Quantized and Corrupted
Measurements - Ren Wang et al

Goal

To solve the problem of data recovery and data clustering from quantized and partially
corrupted measurements when the data satisfies the union of subspaces (UoS) model

Contributions

Sparse alternative proximal algorithm (Sparse-APA) to solve the nonconvex constrained
maximum log-likelihood problem

Theoretical analysis of the proposed data recovery method

Problem Statement

Given observations Y , known boundaries ω0 < ω1 < . . . < ωK and noise distribution Φ,
recover L∗ and cluster the data into the corresponding subspaces Si ’s simultaneously
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Nonconvex optimization problem

min
L,E∈Rm×n,C∈Rn×n

−
m
∑

i=1

n
∑

j=1

K
∑

l=1

1[Yij=l ] log
(

fl
(

Lij + Eij

))

(1)

s.t (L, E ,C) ∈ Sf (2)

where Sf = {(L, E ,C) : L = LC , rank(L) ≤ r , ||L||∞ ≤ α1, ||E ||∞ ≤ α2, ||E ||0 ≤ s, ||ci ||0 ≤
d,Cii = 0, ∀i ∈ [n]} and fl (Xij ) = P(Yij = l |Xij ) = Φ(ωl − Xij )−Φ(ωl−1 − Xij)

Proximal map associated to κ is defined as

proxκ(x) = argmin
u

{

κ(u) +
1

2
||u − x ||2F

}

Proximal gradient method applied to get the solution
Revised objective function is Lipschitz differentiable
Sum of the objective function and other functions in the problem (refer the paper for exact details)
satisfies the Kurdyka-Lojasiewicz (KL) property
Global convergence to a critical point

Spectral clustering to obtain the final group labels

Theoretical analyses of the algorithms
Probabilistic guarantees
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Nonparametric Composite Hypothesis Testing in an Asymptotic Regime -
Qunwei Li et al

Goal

To investigate the nonparametric, composite hypothesis testing (NP-CHT) problem for
arbitrary unknown distributions in the asymptotic regime

Contributions

Asymptotic viewpoint to understand the NP-CHT problem when the number of hypotheses
scales exponentially in the sample size

Maximum mean discrepancy (MMD) and Kolmogorov-Smirnov (KS) distance approaches to
solve the NP-CHT problem

Derive the error exponents and the discrimination rates (analogous to channel coding rate)
Achievability and converse proofs

Problem Statement

M hypotheses and each hypothesis corresponds to a set Pm of unknown distributions
{pm,1, . . . , pm,Mm} for m = 1, 2, . . . ,M

For each set m, we observe training sequences Xm = [xm,1, . . . , xm,Mm ] ∈ R
n×Mm

Determine the hypothesis that the test sequence y belongs to

Regime when M = 2nD , where D is the discrimination rate

Connection to the Channel Coding Problem

Total number of hypotheses corresponds to the total number of messages in channel coding

Discrimination rate D corresponds to the channel coding rate R
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Main Results

MMD-Based Test

δMMD

(

{Xm}
M
m=1 , y

)

= arg min
m,im

MMD2
(

xm,im , y
)

(3)

where

MMD2(x, y) =
1

n(n − 1)

n
∑

i=1

n
∑
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k(xi , xj) +
1

m(m − 1)

m
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m
∑
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2
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n
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i=1

m
∑

j=1

k(xi , yj )

Theorem

Suppose the MMD-based test in (3) is applied to the NP-CHT problem under an assumption
(refer (2) in the paper), where the kernel satisfies 0 ≤ k(x , y) ≤ K for all (x , y). Then the
average probability of error is upper bounded as

Pe ≤ 2nD exp

(

−
n(DO −DI )

2

96K2

)

. (4)

Thus, the achievable discrimination rate is

D =
log e

96K2
lim inf
M→∞

min
1≤i,j≤M

MMD4(pi , pj ) (5)
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Kolmogorov-Smirnov (KS) Test

δ
(

{X}Mm=1 , y
)

= arg min
m,im

DKS

(

xm,im , y
)

(6)

where DKS(x, y) = supa∈R |Fx(a)− Fy(a)|, and Fx(a) =
1
n

∑n
i=1 1[−∞,a](xi )

Theorem

Suppose the KS-based test in (6) is applied to the NP-CHT problem under an assumption (refer
(2) in the paper), where the kernel satisfies 0 ≤ k(x , y) ≤ K for all (x , y). Then the average
probability of error is upper bounded as

Pe ≤ 6× 2nD exp

(

−
n(DO −DI )

2

8

)

. (7)

Thus, the achievable discrimination rate is

D =
log e

8
(DO −DI )

2 (8)

Converse proof on the discrimination capacity
Based on Fano’s inequality
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Joint Channel Estimation and Multiuser Detection for Uplink Grant-Free
NOMA - Yang Du et al

Goal

Joint channel estimation (CE) and multiuser detection (MUD) in a frame based multiuser
transmission scenario

Contributions

Proposed a novel joint active user detection (AUD), CE, and MUD framework for UL grant
free NOMA systems

Multiple measurement vector-compressive sensing (MMV-CS) problem transferred to a block
sparse single measurement vector compressive sensing (BS-SMV-CS) problem

Block sparsity adaptive subspace pursuit (BSASP) algorithm is proposed to solve the above
problem

System Model

K single antenna UEs out of which sparse set of UEs are active, N antenna BS

yp =
∑

k∈Γ

hkakxp,k + np = Ah+ np , (9)

y
[j ]
d =

∑

k∈Γ

hkakx
[j ]
d,k + n

[j ]
d = Adiag (h) x

[j ]
d + n

[j ]
d . (10)
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Problem Formulation

Channel and data share the same support

y
[j ]
d = As

[j ]
d + n

[j ]
d . (11)

Received pilot and data are combined as

[

yp , y
[j ]
d

]

= A
[

h, s
[j ]
d

]

+
[

np, n
[j ]
d

]

, j = 1, 2, . . . , J, (12)

The received signal matrix from (12) is vectorized to form a BS-SMV-CS model

Solved using BSASP algorithm
Exploits the block sparsity structure to choose blocks at a time instead of random sparse indices

Computational complexity analysis
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Other Interesting Papers

1 Performance analysis of approximate message passing for distributed compressed sensing

2 On geometric analysis of sparse subspace clustering

3 Optimal detection and error exponents for hidden semi-Markov models

4 Bayesian Nonparametric Causal Inference: Information Rates and Learning Algorithms

5 Near-Optimal Noisy Group Testing via Separate Decoding of Items

6 Maximum entropy low-rank matrix recovery

7 Community Detection with Side Information: Exact Recovery under the Stochastic Block
Model
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