Journal Watch IEEE Transactions on Signal Processing, August 01 2018 IEEE Transactions on Wireless Communications, June 2018

Chirag Ramesh

SPC Lab, Indian Institute of Science

August 04, 2018

< □ > < 同 >

Goal

• Estimating sparsity level in a single snapshot case

Contributions

- Result for matrices with a Khatri-Rao structure
- Design for Vandermonde matrices with low coherence

System Model

$$\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{n}, \mathbf{b} \in \mathcal{C}^{\mathbf{N}}$$
$$B = [b_1 b_2 \dots b_k] \in \mathcal{C}^{lxk}$$
$$b_i = [b_{1+\rho(i-1)}, b_{2+\rho(i-1)}, \dots, b_{l+\rho(i-1)}]^T \in \mathcal{C}^l$$

Idea is that for a suitably chosen A, rank(B) = K for any K-sparse x

< □ > < 同 > < 三 >

Theorem for Non-Overlapping Blocks

For k blocks of length I and any $r \leq min(k,I)$, the following results are valid:

- For all $s \leq r$ and all s-sparse x, it holds that k-rank(B) = s
- $A = \phi \odot \psi$ for some $\phi \in \mathcal{C}^{k \times N}, \psi \in \mathcal{C}^{k \times N}$ with k-rank $(\phi) \ge r$ and k-rank $(\psi) \ge r$

Theorem for Overlapping Blocks

For k overlapping blocks of length I, block advance p and any $r \leq \min(k,l),$ the following results are valid:

- For all $s \leq r$ and all s-sparse x, it holds that k-rank(B) = s
- A consists of the first m rows of V ⊙ ψ for some ψ ∈ C^{pxN} with V being a Vandermonde matrix such that V restricted to its first k rows has k-rank r

Noisy case

With AWGN, B is full rank with probability 1.

Knowing the statistics of noise, Eigenvalue Threshold Test/Exponential Fitting Test can be used for finding the "effective" rank of B.

< □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・日 ・ ・ ヨ ・ ・

Goal

- Sparse signal recovery with usage of a binary measurement matrix
- Single pass recovery with no iterations
- Guarantees for stable recovery of all sparse vectors with a few measurements

System Model

- **1** $y = Ax + n, A \in \{0, 1\}^{m \times n}$
- Assumption: Every column of A has exactly q non-zero entries

New	Recovery	A	lgorithm
-----	----------	---	----------

- 1: for $j \in [n]$ do
- 2: Construct the *reduced measurement vector* \bar{y}_j .
- 3: Find the number of the elements of \bar{y}_j that are nonzero;

call it ν . \triangleright (In implementation, we find the number of elements that are greater than some tolerance δ .)

4: if
$$\nu > q/2$$
 then

5: Find a group of q/2 elements in \bar{y}_j that are equal; call this value θ_j . \triangleright (In implementation, we allow some tolerance here.)

(日)

6:
$$\hat{x}_j = \theta$$

7: else 8: á

$$\hat{x}_j =$$

0

9: **end**

10: **end**

Results

- Proposed Algorithm with complexity of $\mathcal{O}(nklog(k))$
- Proposed Algorithm requires $m = q^2$ measurements, where $q \ge max(4k, n^{2/3})$
- For n = 20,000 and k = 6, l_1 norm min. requires m = 1369, expander graph requires m = 7921 whereas proposed algorithm requires m = 841

Performance of New Algorithm and ℓ_1 -Norm Minimization with Additive Shot Noise

	New Algorithm		ℓ_1 -norm minimization		
Alpha	Err.	Time	Err.	Time	
10^{-5}	0	0.1335	3.2887e-06	26.8822	
10^{-4}	0	0.1325	3.2975e-05	26.6398	
10^{-3}	0	0.1336	3.3641e-04	28.1876	
10^{-2}	0	0.1357	0.0033	23.1727	
10^{-1}	0	0.1571	0.033	28.9145	
10	0	0.1409	1.3742	26.6362	
20	0	0.1494	1.3967	26.5336	

< □ > < 同 > < 三 >

Compressive Channel Estimation and Multi-User Detection in C-RAN With Low-Complexity Methods

Goal

• Low complexity methods for estimating CSI in a Cloud-Radio Access Network Architecture

Strategy

$$\min_{\mathbf{X}} \alpha_{1} \sum_{i=1}^{K} \boldsymbol{w}_{i} \|\mathbf{X}_{i}\|_{F} + \alpha_{2} \sum_{i=1}^{K} \sum_{j=1}^{G} \mathbf{W}_{i,j} \|\mathbf{X}_{i,j}\|_{F} + \frac{1}{2} \|\mathbf{A}\mathbf{X} - \mathbf{B}\|_{F}^{2}$$

$$\min_{\mathbf{x}} \alpha_1 \sum_{k=1}^{K} \left\| \mathbf{x}^{(k)} \right\|_F + \alpha_2 \left\| \mathbf{x} \right\|_1 + \frac{1}{2} \left\| \bar{\mathbf{A}} \mathbf{x} - \mathbf{b} \right\|_F^2$$

Solution

- Alternating Direction Method of Multipliers
- Block Coordinate Descent
- Hybrid Block Coordinate Descent

(日)

TSP Aug. 1:

- **()** A Framework for Clustered and Skewed Sparse Signal Recovery
- Ø Multilayer Convolutional Sparse Modeling Pursuit and Dictionary Learning
- ODA Estimation Using Compressed Sparse Array
- O Hybrid Beamforming With Selection for Multiuser Massive MIMO Systems

TWC June:

- Estimation of Broadband Multiuser Millimeter Wave Massive MIMO-OFDM Channels by Exploiting Their Sparse Structure
- Ø Joint Optimization of Hybrid Beamforming for Multi-User Massive MIMO Downlink
- Ochannel Estimation for TDD/FDD Massive MIMO Systems With Channel Covariance Computing
- Joint Optimization of Computation and Communication Power in Multi-User Massive MIMO Systems

<ロト < 同ト < ヨト < ヨト