# Journal Watch <br> IEEE Communications- Sept,2018 

Varun Varindani

Indian Institute of Science, Bangalore
September 22, 2018

## Organization

- Likelihood-Based Automatic Modulation Classification in OFDM With Index Modulation
- Joint Power Control and Beamforming for Uplink Non-Orthogonal Multiple Access in 5G Millimeter-Wave Communications
- Subchannel Allocation and Hybrid Precoding in Millimeter-Wave OFDMA Systems


# Likelihood-Based Automatic Modulation Classification(AMC) in OFDM With Index Modulation (J.Zheng and Y.Lv) 

- Contributions- ALRT-based classifier, HLRT-based classifier, low-complexity HLRT-LLR, HLRT-Energy classifier and a blind AMC
- $N_{c}$ Subcarriers in one OFDM symbols are divided into G blocks with N subcarriers,i.e., $N_{c}=\mathrm{NG}$
- $I_{g}^{t}=\left\{i_{g, 1}^{t}, \ldots, i_{g, K}^{t}\right\}$ denote the set of indices of $K$ active subcarriers
- $S_{g}^{t}=\left\{s_{g, 1}^{t}, \ldots, s_{g, K}^{t}\right\}$ corresponds to the set of symbols transmitted over the active subcarriers


## Continue..

- $x_{g}^{t}=x_{g}^{t}\left(I_{g}^{t}, S_{g}^{t}\right)=\sum_{k=1}^{K} s_{g, k}^{t} e_{i t, k}$ denote the frequency domain(FD) signal in gth block
- $\mathbf{y}_{g}^{t}=N \sqrt{\frac{G}{K}} \mathbf{X}_{g}^{t} \mathbf{h}_{g}+\mathbf{w}_{g}^{t}, g=1,2, \ldots, G$,received FD signal ,where $h_{g, j}^{t}, w_{g, j}^{t} \sim C N\left(0, \sigma_{f}^{2}\right), j=1,2, \ldots, N$
- ALRT-bsed AMC: hypothesis $\mathcal{H}_{m}=(K, M)$ is accepted if it achieves largest posterior probability

$$
\begin{aligned}
& p(K, M \mid y, \theta)=\frac{p(y \mid K, M, \theta) p(K, M)}{p(y \mid \theta)} \\
& \tilde{\mathcal{H}}=\underset{\mathcal{H}=(K, M) \epsilon K \times M}{\operatorname{argmax} \ln p(y \mid M, K, \theta)}
\end{aligned}
$$

- Theorem 1: In ALRT-based AMC, the classifier accepts modulation parameter hypothesis according to

$$
\begin{gathered}
\hat{\mathcal{H}}=\underset{\mathcal{H}=(K, M) \epsilon K \times M}{\operatorname{argmax}} \Gamma_{A L R T}(K, M) \\
\text { where } \Gamma_{A L R T}(K, M)=-T G \ln \left(C(N, K) M^{K}\right)+ \\
\sum_{t=1}^{T} \sum_{g=1}^{G} \ln \sum_{I_{g}^{t}}\left(\exp \left(-\frac{\sum_{\alpha \epsilon \epsilon \epsilon_{g}^{t}}\left|y_{g, \alpha}^{t}\right|^{2}}{\sigma_{f}^{2}}\right) x\right. \\
\left.\prod_{\alpha \epsilon \epsilon_{g}^{t}} \sum_{x_{g, \alpha}^{t} \epsilon \mathcal{X}_{M}} \exp \left(-\frac{\left|y_{g, \alpha}^{t}-N \sqrt{G / K} x_{g, \alpha}^{t} h_{g, \alpha}\right|^{2}}{\sigma_{f}^{2}}\right)\right)
\end{gathered}
$$

- Complexity of processing the hypothesis is $\mathrm{O}(\mathrm{TGC}(\mathrm{N}, \mathrm{K})(\mathrm{N}-\mathrm{K}+\mathrm{KM}))$ in ALRT-based AMC
- HLRT-based AMC: To reduce the complexity,first $I_{g}^{t}$ is estimated and then $S_{g}^{t}$ is averaged out from $x_{g}^{t}$


## Continue..

- Corollary 1: HLRT-based AMC, the classifier accepts the modulation parameter as

$$
\begin{gathered}
\hat{\mathcal{H}}=\underset{\mathcal{H}=(K, M) \epsilon K \times M}{\operatorname{argmax}} \Gamma_{H L R T}(K, M) \\
\text { where } \Gamma_{H L R T}(K, M)=-T G \ln \left(M^{K}\right)+ \\
\quad \sum_{t=1}^{T} \sum_{g=1}^{G}\left(\left(-\frac{\sum_{\alpha \epsilon \bar{\epsilon} t}^{\underline{t}}\left|y_{g, \alpha}^{t}\right|^{2}}{\sigma_{f}^{2}}\right)+\right. \\
\sum_{\alpha \epsilon \epsilon_{g}^{t}} \ln \sum_{x_{g, \alpha}^{t} \epsilon} \mathcal{X}_{M} \\
\left.\exp \left(-\frac{\left|y_{g, \alpha}^{t}-N \sqrt{G / K} x_{g, \alpha}^{t} h_{g, \alpha}\right|^{2}}{\sigma_{f}^{2}}\right)\right)
\end{gathered}
$$

- Complexity of processing the hypothesis is $\mathrm{O}(\mathrm{TG}(\mathrm{N}-\mathrm{K}+\mathrm{KM}+\mathrm{N}(\mathrm{M}+1)))$ in HLRT-based AMC


# Joint Power Control and Beamforming for Uplink Non-Orthogonal Multiple Access in 5G Millimeter-Wave Communications (L.Zhu , J.Zhang , Z.Xiao ) 

- Contributions- (Suboptimal solution) Decomposes the original problem into two sub-problems: one is a power control and beam gain allocation problem, and the other is a beamforming problem
- Uplink Scenario is used where BS is equipped with a N -element antenna array
- $y=h_{1}^{H} w \sqrt{p_{1}} s_{1}+h_{2}^{H} w \sqrt{p_{2}} s_{2}+n^{H} w, 2$-user NOMA model where $w$ denotes a beamforming vector with $\left|[w]_{k}\right|=\frac{1}{\sqrt{N}}$ for $k=1,2, \ldots, N$ and $h_{1} \geq h_{2}$


## Continue..

- $h_{i}=\lambda_{i} a\left(N, \Omega_{i}\right)$, channel between user i and BS is an mm-wave channel, $a($.$) is a steering vector$
- Decoding- Case 1: $s_{1}$ is decoded first

$$
R_{1}^{(1)}=\log _{2}\left(1+\frac{\left|h_{1}^{H} w\right|^{2} p_{1}}{\left|h_{2}^{H} w\right|^{2} p_{2}+\sigma^{2}}\right), R_{2}^{(1)}=\log _{2}\left(1+\frac{\left|h_{2}^{H} w\right|^{2} p_{2}}{\sigma^{2}}\right)
$$

Case 2: $s_{2}$ is decoded first

$$
R_{1}^{(2)}=\log _{2}\left(1+\frac{\left|h_{1}^{H} w\right|^{2} p_{1}}{\sigma^{2}}\right), R_{2}^{(2)}=\log _{2}\left(1+\frac{\left|h_{2}^{H} w\right|^{2} p_{2}}{\left|h_{1}^{H} w\right|^{2} p_{1}+\sigma^{2}}\right)
$$

- $R_{1}+R_{2}=\log _{2}\left(1+\frac{\left|h_{1}^{H} w\right|^{2} p_{1}+\left|h_{2}^{H} w\right|^{2} p_{2}}{\sigma^{2}}\right)$, sum rate of different decoding orders are identical


## Continue..

- Problem:

$$
\underset{p_{1}, p_{2}, w}{\operatorname{Maximize}} R_{1}+R_{2}
$$

Subject to $R_{1} \geq r_{1}, R_{2} \geq r_{2}$

$$
\begin{aligned}
& 0 \leq p_{1}, p_{2} \leq P \\
& \quad\left|[w]_{k}\right|=\frac{1}{\sqrt{(N)}}
\end{aligned}
$$

- Solution: Problem is non-convex, proposed solution is sub-optimal(decomposes the original problem into two sub-problems )
- Solution of Power Control and Beam gain allocation Sub-Problem:
Lemma 1: With the ideal beamforming, the beam gains satisfy

$$
\frac{c_{1}}{\left|\lambda_{1}\right|^{2}}+\frac{c_{2}}{\left|\lambda_{2}\right|^{2}}=N
$$

where $c_{1}=\left|h_{1}^{H} w\right|^{2}$ and $c_{2}=\left|h_{2}^{H} w\right|^{2}$
Lemma 2: With the ideal beamforming, the optimal transmission power is

$$
p_{1}^{*}=P, p_{2}^{*}=P
$$

## Continue..

- From Lemma 1 and Lemma 2, the optimal values of $\left|h_{2}^{H} w\right|^{2}$ and $\left|h_{1}^{H} w\right|^{2}$ are

$$
c_{2}^{*}=\frac{\left(2^{r_{2}}-1\right) \sigma^{2}}{P}, c_{1}^{*}=\left|\lambda_{1}\right|^{2}\left(N-\frac{c_{2}^{*}}{\left|\lambda_{2}\right|^{2}}\right)
$$

Decoding $s_{1}$ first is optimal

- Solution of the Beamforming Sub-Problem:

$$
\underset{w}{\operatorname{Maximize}}\left|h_{1}^{H} w\right|^{2}
$$

Subject to $\left|h_{2}^{H} w\right|^{2} \geq c_{2}^{*}$

$$
\left|[w]_{k}\right|=\frac{1}{\sqrt{(N)}}, k=1,2, \ldots, N
$$

- Above problem is non-convex,after relaxing contraints we get,

$$
\underset{w}{\operatorname{Maximize}} a_{1}^{H} w
$$

Subject to $\left|a_{2}^{H} w\right| \geq g$

$$
\left|[w]_{k}\right| \leq \frac{1}{\sqrt{(N)}}, k=1,2, \ldots, N
$$

where $g=\sqrt{\frac{c_{2}^{*}}{\left|\lambda_{2}\right|^{2}}}, a_{i} \equiv a\left(N, \Omega_{i}\right)$

- Still it is not convex, split it into a serial of convex optimization problems ,i.e., assume different phases for $a_{2}^{H} w$

$$
\underset{w}{\operatorname{Maximize}} a_{1}^{H} w
$$

Subject to $\operatorname{Re}\left(a_{2}^{H} w e^{2 \pi j \frac{m}{M}}\right) \geq g$

$$
\left|[w]_{k}\right| \leq \frac{1}{\sqrt{(N)}}, k=1,2, \ldots, N
$$

where $m=1,2, \ldots, M$ and M is the number of candidate phases

## Subchannel Allocation and Hybrid Precoding in Millimeter-Wave OFDMA Systems (V.Ha, D.Nguyen, J.Frigon)

- Contributions- Maximizes the sum rate under a constraint on the number of data streams
- System model- downlink mm-wave MU-OFDMA HB(Hybrid beamforming) system with a BS with $N_{T}$ antennas and $N_{R F}$ RF chains serves K remote single-antenna UE over S subcarriers
- SINR at user k over subcarrier s,

$$
\operatorname{SINR}_{k, s}=\frac{a_{k, s}\left|h_{k, s}^{H} A w_{k, s}\right|^{2}}{\sum_{j \neq k} a_{j, s}\left|h_{k, s}^{H} A w_{j, s}\right|^{2}+\sigma^{2}}
$$

where

$$
\begin{aligned}
a_{k, s}= & 1 \text { if user } k \text { is assigned subcarrier } s \\
& 0 \text {,else }
\end{aligned}
$$

$w_{k, s}$, digital precoding vector applied to data symbols $x_{k, s}$ A denotes analog precoding matrix to map RF signals to RF chains

## Continue..

- Problem-

$$
\begin{gather*}
\max _{a_{k, s}, w_{k, s}, A} \sum_{k, s} \log \left(1+S I N R_{k, s}\right)  \tag{1}\\
\text { s.t } \\
A \epsilon A_{R}  \tag{2}\\
\sum_{k, s}\left|a_{k, s}\right|^{2} w_{k, s}^{H} A^{H} A w_{k, s} \leq P_{T}  \tag{3}\\
\sum_{k, s} a_{k, s} \leq \bar{D} \tag{4}
\end{gather*}
$$

where $\bar{D}$ denotes highest number of concurrent data streams which system can support in one transmission slot

## Continue..

- Solution- let

$$
\begin{aligned}
& \tilde{w}_{k, s}=a_{k, s} w_{k, s} \\
& \tilde{p}_{k, s}=\tilde{w}_{k, s}^{H} \tilde{w}_{k, s}=\left|a_{k, s}\right|^{2} w_{k, s}^{H} w_{k, s}
\end{aligned}
$$

- Inequality (4) can be transformed as

$$
\begin{equation*}
\|\tilde{p}\|_{0} \leq \bar{D} \tag{5}
\end{equation*}
$$

- Problem-

$$
\begin{array}{r}
\max _{\tilde{w}_{k, s}, A} \sum_{k, s} \log \left(1+\operatorname{SIN} R_{k, s}\right) \\
\text { s.t. }(2),(3),(5)
\end{array}
$$

## Continue..

- Sparse HP Design:

Stage one- max-sum-rate Optimization:

$$
\begin{array}{r}
\max _{u_{k, s}} \sum_{k, s} \log \left(1+\frac{\left|h_{k, s}^{H} u_{k, s}\right|^{2}}{\sum_{j \neq s}\left|h_{k, s}^{H} u_{j, s}\right|^{2}+\sigma^{2}}\right) \\
\text { s.t. } \sum_{k, s} u_{k, s}^{H} u_{k, s} \leq P_{T}
\end{array}
$$

where $u_{k, s}=A \tilde{w}_{k, s}$
Stage two- Sparse HP Design: Let $u_{k, s}^{\text {opt }}$ be the outcome of above problem

$$
\begin{array}{r}
\min _{\tilde{w}_{k, s}, A} \sum_{k, s}\left\|u_{k, s}^{o p t}-A \tilde{w}_{k, s}\right\|_{2}^{2} \\
\text { s.t. }(2),(3),(5)
\end{array}
$$

- Results show that the joint SA and HP design achieves better sum-rate while requiring the lowest computational complexity

