Journal watch

IEEE Transactions on Signal Processing 01 Jan and 15 Feb 2017

Ramu Naidu R
IISc, SPC lab
February 4, 2017

Group Sparse Recovery via the $I^{0}\left(I^{2}\right)$ Penalty: Theory and

 AlgorithmYuling Jiao, Bangti Jin, and Xiliang Lu

Definition

Let M, k be specified integers with $k \ll M$. Let
$\mathbb{G}=\left\{G_{1}, G_{2}, \ldots, G_{g}\right\}$ be a partition of $\{1,2, \ldots, M\}$, such that $\left|G_{i}\right| \leq k$ for all i. For $S \subseteq\{1,2, \ldots, g\}$, define $G_{S}=\bigcup_{i \in S} G_{i}$. A subset $\Lambda \subseteq\{1,2, \ldots, M\}$ is said to be S-group k-sparse for some $S \subseteq\{1,2, \ldots, g\}$ if $\Lambda=G_{S}$ and $|\Lambda| \leq k$ and group k-sparse if it is S-group k-sparse for some set $S \subseteq\{1,2, \ldots, g\}$. A vector $x \in \mathbb{R}^{M}$ is said to be group k-sparse if its support set $\operatorname{supp}(x)$ is contained in a group k-sparse set.

- Clearly all notions of group sparsity are with reference to a particular partitioning \mathbb{G}
- It is easy to see that if $g=M$ and each set G_{i} consists of exactly one element, then group k-sparsity reduces to conventional k-sparsity
- From the definition, it is clear that every group k-sparse vector is also k-sparse. However, the converse need not be true
- The authors proposed and analyzed a non convex model and algorithm for group sparse recovery based on regularized least squares with an $I^{0}\left(I^{2}\right)$ penalty
- They proposed the following optimization problem:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{M}}\left\{J_{\lambda}(x)=\frac{1}{2}\|\Psi x-y\|^{2}+\lambda\|x\|_{\rho^{\circ}\left(I^{2}\right)}\right\} \tag{1}
\end{equation*}
$$

where $\|x\|_{1^{\circ}\left(I^{2}\right)}=\left|\left\{i:\left\|x_{G_{i}}\right\|_{I^{2}} \neq 0\right\}\right|$, with respect to the given partition $\left\{G_{i}\right\}_{i=1}^{g}$.

- Later they analyzed the model (1) using the concept blockwise mutual coherence (BMC) of the matrix Ψ with respect to the partition $\left\{G_{i}\right\}_{i=1}^{g}$ defined as follows:

$$
\begin{equation*}
\mu=\max _{i \neq j} \mu_{i, j} \text {, where } \mu_{i, j}=\sup _{u \in \mathcal{N}_{i} /\{0\}, v \in \mathcal{N}_{j} /\{0\}} \frac{\langle u, v\rangle}{\|u\|\|v\|} \text {, } \tag{2}
\end{equation*}
$$

where \mathcal{N}_{i} is the subspace spanned by the columns of $\Psi_{G_{i}}$.

Theorem

There exists a global minimizer to problem (1).

- By assuming $\mu \in\left(0, \frac{1}{3 g}\right)$, they proposed theoretical results of model (1)

Model-Based Nonuniform Compressive Sampling and Recovery of Natural Images Utilizing a Wavelet-Domain Universal Hidden Markov Model

Behzad Shahrasbi and Nazanin Rahnavard

- One of the central problems in CS is the construction of sensing matrices $\psi \in \mathbb{C}^{m \times M}$ such that an arbitrary s-sparse vector $u \in \mathbb{C}^{M}$ can be efficiently reconstructed from $y=\psi u$
- The vector u is said to be s-sparse if it can be decomposed as $u=\Gamma \alpha$, where the unitary matrix $\Gamma \in \mathbb{C}^{M \times M}$ is the sparsifying basis and $\alpha \in \mathbb{C}^{M}$ has s-non zero entries
- The authors proposed a compressive sampling technique for natural images in wavelet domain. Particularly, they constructed sensing matrix Ψ using universal hidden Markov tree (uHMT) from a wavelet decomposition of a natural image
- By modifying the two algorithms, Bayesian CS via belief propagation (CSBP) and approximate message passing (AMP) they solve the image recovery problem

Figure : Wavelet decomposition of an image.

- Here A, H, V, D stand for the approximate coefficients, horizontal, vertical, and diagonal subband coefficients, respectively
- The decomposition has $4^{-j} n, \sum_{i=1}^{J} 34^{i-J-1} n$ approximate and subband coefficients respectively
- Using suband coefficients they constructed the sensing matrix Ψ
- Also they proved that coherence of $\Psi \Gamma$ is in the order of $\sqrt{\log \left(\frac{n}{\sqrt{\delta}}\right)}$

Perfect Recovery Conditions for Non-negative Sparse Modeling

Yuki Itoh, Marco F. Duarte and Mario Parente

- The authors considered the following linear model with non-negative coefficients:

$$
y=\Psi x+e(x \geq 0)
$$

- This paper considers the performance of non- negative sparse modeling under a more general scenario, where the observed signals have an unknown arbitrary distortion
- For support recovery the considered the following nonnegative Lasso algorithm:

$$
\begin{equation*}
\frac{1}{2}\|\Psi x-y\|_{2}^{2}+\lambda\|x\|_{1} ; \text { s.t, } x \geq 0 \tag{3}
\end{equation*}
$$

- The authors derived the model recovered conditions for nonnegative Lasso using positive subset coherence (PSC)
- The metric positive subset coherence (PSC) can be defined as follows: For a given $\gamma \subseteq\{1,2, \ldots, M\}$ with $|\gamma|=J \leq M$ and $i \notin \gamma$,

$$
\operatorname{PSC}(\gamma ; i)=1-1_{J}^{T} \Psi_{\gamma}^{\dagger} a_{i} .
$$

- Using this metric they proved the following theorem.

Theorem

Let γ be a subset of the column indices of the dictionary matrix Ψ such that $|\gamma|=J \leq m$ and the atoms associated with indices in γ are linearly independent. Let \hat{x} be a solution to NLasso. The support of \hat{x} is equal to γ if the following two conditions hold:
(1) Minimum coefficient condition (MCC): $\Psi_{\gamma}^{\dagger} y \succ \lambda\left(\Psi_{\gamma}^{T} \Psi_{\gamma}\right)^{-1} 1_{J}$.
(2) Non-linearity vs. Subset Coherence Condition (NSCC):

$$
y^{\top} P_{\gamma}^{\perp} a_{i}<\lambda P S C(\gamma ; i) ; \forall i \in \gamma^{c} .
$$

On the Noise Robustness of Simultaneous Orthogonal Matching Pursuit(SOMP)

 Jean-Francois Determe, Jerome Louveaux, Laurent Jacques, and Francois Horlin- The central problem in CS has been extended to finding the sparse solution vectors for multiple measurement vectors (MMV)
- That is, for a sensing matrix Φ of size $m \times M$ with $m \ll M$ and given multiple measurement vectors $y^{k}, k=1, \ldots, r$, we look for solution vectors $x^{k}, k=1, \ldots, r$ such that

$$
\begin{equation*}
y^{k}=\Phi x^{k}, k=1,2, \ldots, r \tag{4}
\end{equation*}
$$

and the vectors $x^{k}, k=1, \ldots, r$, are jointly-sparse (that is nonzero entries are present at the same locations).

- One can recover the joint sparse vectors by using SOMP algorithm
- The authors have given the upper bound of the probability that SOMP recovers at least one incorrect entry of the joint support during a prescribed number of iterations

Theorem

For a fixed iteration t, let $P \in \mathcal{P}^{(t)}$ and $R=(I-P) Y$. i.e., R is one of the residuals that could be generated by SOMP on the basis of Y at iteration $t-1$ assuming that only correct atoms have been identified. For $g \sim \mathcal{N}\left(0, I_{K \times K}\right)$ and for all $\alpha>0$, the probability of SOMP picking an incorrect atom when running one iteration on R is upper bounded by

$$
\mathbb{P}\left(f_{j_{c}^{t, p}}^{(t, p)}(g) \leq \alpha\right)+\sum_{j \in S} \mathbb{P}\left(f_{j}^{(t, p)}(g) \geq \alpha\right)
$$

Other Interesting Papers

- Second-Generation Curvelets on the Sphere by J. Y. H. Chan, et.al.
- Manifold Learning With Contracting Observers for Data-Driven Time-Series Analysis by T. Shnitzer, et.al.
- Coarrays, MUSIC, and the Cram erRao Bound by M. Wang, et.al.
- On the 2D Phase Retrieval Problem by Y. C. Eldar, et.al.

Thank you

