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Group Sparse Recovery via the l0(l2) Penalty: Theory and
Algorithm
Yuling Jiao, Bangti Jin, and Xiliang Lu

Definition

Let M, k be specified integers with k � M. Let
G = {G1,G2, . . . ,Gg} be a partition of {1, 2, . . . ,M}, such that
|Gi | ≤ k for all i . For S ⊆ {1, 2, . . . , g}, define GS =

⋃
i∈S Gi . A

subset Λ ⊆ {1, 2, . . . ,M} is said to be S-group k-sparse for some
S ⊆ {1, 2, . . . , g} if Λ = GS and |Λ| ≤ k and group k-sparse if it
is S-group k-sparse for some set S ⊆ {1, 2, . . . , g}. A vector
x ∈ RM is said to be group k-sparse if its support set supp(x) is
contained in a group k-sparse set.

Clearly all notions of group sparsity are with reference to a
particular partitioning G
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It is easy to see that if g = M and each set Gi consists of
exactly one element, then group k-sparsity reduces to
conventional k-sparsity

From the definition, it is clear that every group k-sparse vector
is also k-sparse. However, the converse need not be true

The authors proposed and analyzed a non convex model and
algorithm for group sparse recovery based on regularized least
squares with an l0(l2) penalty

They proposed the following optimization problem:

min
x∈RM

{
Jλ(x) =

1

2
‖Ψx − y‖2 + λ‖x‖l0(l2)

}
, (1)

where ‖x‖l0(l2) = |{i : ‖xGi
‖l2 6= 0}|, with respect to the given

partition {Gi}gi=1.
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Later they analyzed the model (1) using the concept
blockwise mutual coherence (BMC) of the matrix Ψ with
respect to the partition {Gi}gi=1 defined as follows:

µ = max
i 6=j

µi ,j , where µi ,j = sup
u∈Ni/{0},v∈Nj/{0}

〈u, v〉
‖u‖‖v‖

, (2)

where Ni is the subspace spanned by the columns of ΨGi
.

Theorem

There exists a global minimizer to problem (1).

By assuming µ ∈ (0, 1
3g ), they proposed theoretical results of

model (1)
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Model-Based Nonuniform Compressive Sampling and
Recovery of Natural Images Utilizing a Wavelet-Domain
Universal Hidden Markov Model
Behzad Shahrasbi and Nazanin Rahnavard

One of the central problems in CS is the construction of
sensing matrices Ψ ∈ Cm×M such that an arbitrary s-sparse
vector u ∈ CM can be efficiently reconstructed from y = Ψu

The vector u is said to be s-sparse if it can be decomposed as
u = Γα, where the unitary matrix Γ ∈ CM×M is the
sparsifying basis and α ∈ CM has s−non zero entries

The authors proposed a compressive sampling technique for
natural images in wavelet domain. Particularly, they
constructed sensing matrix Ψ using universal hidden Markov
tree (uHMT) from a wavelet decomposition of a natural image

By modifying the two algorithms, Bayesian CS via belief
propagation (CSBP) and approximate message passing
(AMP) they solve the image recovery problem 5 / 12



Figure : Wavelet decomposition of an image.

Here A, H, V , D stand for the approximate coefficients,
horizontal, vertical, and diagonal subband coefficients,
respectively

The decomposition has 4−jn,
∑J

i=1 34i−J−1n approximate and
subband coefficients respectively

Using suband coefficients they constructed the sensing matrix
Ψ

Also they proved that coherence of ΨΓ is in the order of√
log( n√

δ
)
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Perfect Recovery Conditions for Non-negative Sparse
Modeling
Yuki Itoh, Marco F. Duarte and Mario Parente

The authors considered the following linear model with
non-negative coefficients:

y = Ψx + e(x ≥ 0)

This paper considers the performance of non- negative sparse
modeling under a more general scenario, where the observed
signals have an unknown arbitrary distortion

For support recovery the considered the following non-
negative Lasso algorithm:

1

2
‖Ψx − y‖22 + λ‖x‖1; s.t, x ≥ 0. (3)

The authors derived the model recovered conditions for non-
negative Lasso using positive subset coherence (PSC) 7 / 12



The metric positive subset coherence (PSC) can be defined as
follows: For a given γ ⊆ {1, 2, . . . ,M} with |γ| = J ≤ M and
i /∈ γ,

PSC (γ; i) = 1− 1TJ Ψ†γai .

Using this metric they proved the following theorem.

Theorem

Let γ be a subset of the column indices of the dictionary matrix Ψ
such that |γ| = J ≤ m and the atoms associated with indices in γ
are linearly independent. Let x̂ be a solution to NLasso. The
support of x̂ is equal to γ if the following two conditions hold:

1 Minimum coefficient condition (MCC):Ψ†γy � λ(ΨT
γ Ψγ)−11J .

2 Non-linearity vs. Subset Coherence Condition (NSCC):
yTP⊥γ ai < λPSC (γ; i);∀i ∈ γc .
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On the Noise Robustness of Simultaneous Orthogonal
Matching Pursuit(SOMP)
Jean-Francois Determe, Jerome Louveaux, Laurent Jacques, and Francois Horlin

The central problem in CS has been extended to finding the
sparse solution vectors for multiple measurement vectors
(MMV)

That is, for a sensing matrix Φ of size m ×M with m� M
and given multiple measurement vectors yk , k = 1, . . . , r , we
look for solution vectors xk , k = 1, . . . , r such that

yk = Φxk , k = 1, 2, . . . , r , (4)

and the vectors xk , k = 1, . . . , r , are jointly-sparse (that is
nonzero entries are present at the same locations).

One can recover the joint sparse vectors by using SOMP
algorithm

9 / 12



The authors have given the upper bound of the probability
that SOMP recovers at least one incorrect entry of the joint
support during a prescribed number of iterations

Theorem

For a fixed iteration t, let P ∈ P(t) and R = (I − P)Y . i.e., R is
one of the residuals that could be generated by SOMP on the basis
of Y at iteration t − 1 assuming that only correct atoms have been
identified. For g ∼ N (0, IK×K ) and for all α > 0, the probability of
SOMP picking an incorrect atom when running one iteration on R
is upper bounded by

P
(

f
(t,p)

j t,pc
(g) ≤ α

)
+
∑
j∈S

P
(

f
(t,p)
j (g) ≥ α

)

10 / 12



Other Interesting Papers
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et.al.
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Thank you

12 / 12


