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Group Sparse Recovery via the /°(/?) Penalty: Theory and
Algorithm

Yuling Jiao, Bangti Jin, and Xiliang Lu

Definition

Let M, k be specified integers with kK < M. Let

G = {G1, Gy, ..., Gg} be a partition of {1,2,..., M}, such that
|Gj| < k forall i. For S € {1,2,...,g}, define Gs = J;c5 Gi- A
subset A C {1,2,..., M} is said to be S-group k-sparse for some
SC{1,2,...,g}if A= Gs and |A| < k and group k-sparse if it
is S-group k-sparse for some set S C {1,2,...,g}. A vector

x € RM is said to be group k-sparse if its support set supp(x) is
contained in a group k-sparse set.

@ Clearly all notions of group sparsity are with reference to a
particular partitioning G




It is easy to see that if g = M and each set G; consists of
exactly one element, then group k-sparsity reduces to
conventional k-sparsity

From the definition, it is clear that every group k-sparse vector
is also k-sparse. However, the converse need not be true

The authors proposed and analyzed a non convex model and
algorithm for group sparse recovery based on regularized least
squares with an /°(/?) penalty

They proposed the following optimization problem:

) 1
min {Jm = vy + Auxulouz)}, (1)
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where [|x|[o2) = [{i : |Ixg||2 # 0}[, with respect to the given
partition {G;}?_;.




o Later they analyzed the model (1) using the concept
blockwise mutual coherence (BMC) of the matrix W with
respect to the partition {G;}%_; defined as follows:
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p = maxpu;j, where p;; =
i#]

where N is the subspace spanned by the columns of V..

There exists a global minimizer to problem (1). I

@ By assuming p € (0, é) they proposed theoretical results of
model (1)
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Model-Based Nonuniform Compressive Sampling and
Recovery of Natural Images Utilizing a Wavelet-Domain

Universal Hidden Markov Model
Behzad Shahrasbi and Nazanin Rahnavard

@ One of the central problems in CS is the construction of
sensing matrices W € C™M such that an arbitrary s-sparse
vector u € CM can be efficiently reconstructed from y = Wu

@ The vector u is said to be s-sparse if it can be decomposed as
u = o, where the unitary matrix I € CM*M s the
sparsifying basis and av € CM has s—non zero entries

@ The authors proposed a compressive sampling technique for
natural images in wavelet domain. Particularly, they
constructed sensing matrix W using universal hidden Markov
tree (UHMT) from a wavelet decomposition of a natural image

@ By modifying the two algorithms, Bayesian CS via belief
propagation (CSBP) and approximate message passing
(AMP) they solve the image recovery problem
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Figure : Wavelet decomposition of an image.

@ Here A, H, V, D stand for the approximate coefficients,
horizontal, vertical, and diagonal subband coefficients,
respectively

@ The decomposition has 477n, Zle 34/=J=1p approximate and
subband coefficients respectively

@ Using suband coefficients they constructed the sensing matrix
|\

@ Also they proved that coherence of WI is in the order of
Iog(%)
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Perfect Recovery Conditions for Non-negative Sparse

Modeling

Yuki Itoh, Marco F. Duarte and Mario Parente

@ The authors considered the following linear model with
non-negative coefficients:

y =WUx+e(x >0)

@ This paper considers the performance of non- negative sparse
modeling under a more general scenario, where the observed
signals have an unknown arbitrary distortion

@ For support recovery the considered the following non-
negative Lasso algorithm:

1
SIIWx =yl + Allxlls; s.t, x> 0. (3)

@ The authors derived the model recovered conditions for non-
negative Lasso using positive subset coherence (PSC)
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@ The metric positive subset coherence (PSC) can be defined as
follows: For a given v C {1,2,..., M} with |y|=J < M and
i,

PSC(y;i)=1-— lelllga,-.

@ Using this metric they proved the following theorem.

Theorem
Let v be a subset of the column indices of the dictionary matrix W
such that |y| = J < m and the atoms associated with indices in
are linearly independent. Let X be a solution to NLasso. The
support of X is equal to ~y if the following two conditions hold:
Q@ Minimum coefficient condition (MCC)Wly - AWIW,) 1.
@ Non-linearity vs. Subset Coherence Condition (NSCC):
yTPVLa,- < APSC(~;i); Vi € ~¢.




On the Noise Robustness of Simultaneous Orthogonal
Matching Pursuit(SOMP)

Jean-Francois Determe, Jerome Louveaux, Laurent Jacques, and Francois Horlin

@ The central problem in CS has been extended to finding the
sparse solution vectors for multiple measurement vectors
(MMV)

@ That is, for a sensing matrix ® of size m x M with m < M
and given multiple measurement vectors y¥, k =1,...,r, we
look for solution vectors x¥, k = 1,...,r such that

yk=oxk k=1,2,...,r, (4)

and the vectors x¥, k = 1,...,r, are jointly-sparse (that is
nonzero entries are present at the same locations).

@ One can recover the joint sparse vectors by using SOMP
algorithm




@ The authors have given the upper bound of the probability
that SOMP recovers at least one incorrect entry of the joint
support during a prescribed number of iterations

Theorem

For a fixed iteration t, let P € P(Y) and R= (I — P)Y. i.e, R is
one of the residuals that could be generated by SOMP on the basis
of Y at iteration t — 1 assuming that only correct atoms have been
identified. For g ~ N(0, Ik« k) and for all « > 0, the probability of
SOMP picking an incorrect atom when running one iteration on R
is upper bounded by

(f(t”’) ) < a)—!—ZIP’( P(g) > a)

JES
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Other Interesting Papers

@ Second-Generation Curvelets on the Sphere by J. Y. H. Chan,
et.al.

@ Manifold Learning With Contracting Observers for
Data-Driven Time-Series Analysis by T. Shnitzer, et.al.

@ Coarrays, MUSIC, and the Cram erRao Bound by M. Wang,
et.al.

@ On the 2D Phase Retrieval Problem by Y. C. Eldar, et.al.
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Thank you
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