Journal Watch IEEE Transactions on Signal Processing (Mar. 15, 2016) IEEE Transactions on Information Theory (Jan. 2016)

Lekshmi Ramesh

Signal Processing for Communications Lab IISc, Bangalore

April 9, 2016

(日) (四) (注) (注) (正)

1/10

Matrix Completion With Column Manipulation: Near-Optimal Sample-Robustness-Rank Tradeoffs

Y. Chen, H. Xu, C. Caramanis, S. Sanghavi (TIT, Jan. 2016) Goal: Matrix completion from partial observations when columns are adversarially corrupted

• Setup:
$$M$$
, L_0 , $C_0 \in \mathbb{R}^{m \times (n+n_c)}$
 n : number of non-corrupted columns
 n_c : number of corrupted columns
 L_0 low-rank, S_0 column-sparse
 $l_0 \subset [n + n_c]$: indices of corrupted columns
 $\Omega \subseteq [m] \times [n + n_c]$
 P_{Ω} : projection onto space of matrices supported on
 $M = L_0 + C_0$

Contributions:

- an algorithm based on trimming+convex optimization
- \blacksquare sufficient conditions under which algorithm provably recovers L_0 and identifies I_0

Ω

Algorithm 1 Manipulator Pursuit

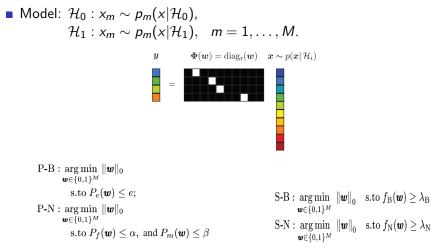
Input: $\mathcal{P}_{\Omega}(M), \Omega, \lambda, \rho$. **Trimming**: For $j = 1, ..., n + n_c$, if the number of observed entries h_j on the *j*-th column satisfies $h_j > \rho m$, then randomly select ρm entries (by sampling without replacement) from these h_j entries and set the rest as unobserved. Let $\hat{\Omega}$ be the set of remaining observed indices. **Solve** for optimum (L^*, C^*) :

> minimize_{L,C} $||L||_* + \lambda ||C||_{1,2}$ (2) subject to $\mathcal{P}_{\hat{\Omega}}(L+C) = \mathcal{P}_{\hat{\Omega}}(M)$

Set $I^* = \text{column-support}(C^*) := \{j : C_{ij}^* \neq 0 \text{ for some } i\}.$ Output: L^* , C^* and I^* . Sparse Sensing for Distributed Detection

S. P. Chepuri and G. Leus (TSP, Mar.15, 2016)

- Offline sampling technique for distributed detection
- Binary Hypothesis Testing setup, consider Bayesian and Neyman-Pearson frameworks



• Use: $f_N(\mathbf{w}) = K(\mathcal{H}_1 || \mathcal{H}_0) = \sum_{m=1}^M w_m K_m(\mathcal{H}_1 || \mathcal{H}_0)$

Joint Covariance Estimation with Mutual Linear Structure

I. Soloveychik and A. Wiesel (TSP, Mar.15, 2016)

- Goal: Joint estimation of structured covariance matrices.
 Given groups of measurements from populations with different covariance matrices (but with common structure),
 - estimate the common structure
 - estimate the covariance matrices
- Truncated SVD on sample covariances

$$\mathbf{S}_{k} = rac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{k} \mathbf{x}_{i}^{kT}, \qquad \mathbf{S} = [\mathbf{s}_{1}, \dots, \mathbf{s}_{K}]$$
 $\mathbf{S}' = \widehat{\mathbf{U}} \begin{pmatrix} \widehat{\mathbf{\Sigma}} & 0\\ 0 & \widehat{\mathbf{\Sigma}}_{n} \end{pmatrix} \widehat{\mathbf{W}}^{T} = [\widehat{\mathbf{U}}_{1} \widehat{\mathbf{U}}_{2}] \begin{pmatrix} \widehat{\mathbf{\Sigma}} & 0\\ 0 & \widehat{\mathbf{\Sigma}}_{n} \end{pmatrix} [\widehat{\mathbf{W}}_{1} \widehat{\mathbf{W}}_{2}]^{T}$

Estimator:

 $\widehat{\mathbf{Y}}' = \widehat{\mathbf{U}}_1 \widehat{\mathbf{\Sigma}} \widehat{\mathbf{W}}_1^T$

Poisson Matrix Recovery and Completion

Y. Cao and Y. Xie (TSP, Mar.15, 2016)

- Goal: Matrix recovery/completion from compressive/incomplete measurements
- Assumption: Matrix M is low-rank, observations $y = [y_1, \dots, y_m]$ are Poisson distributed

Matrix recovery

 $y_i \sim \text{Poisson}(\text{Tr}(A_i^T M)), \quad i = 1, 2, \dots, m.$ Define $\mathcal{A} : \mathbb{R}^{d_1 \times d_2}_+ \to \mathbb{R}^m$, with $[\mathcal{A}M]_i = \text{Tr}(A_i^T M).$

Formulation using maximum-likelihood: $L(X) = \sum_{i=1}^{m} (y_i \log[\mathcal{A}X]_i - [\mathcal{A}X]_i) - \lambda pen(X)$

Contributions

- Establish bounds on recovery error
- Propose Penalized Maximum-Likelihood Singular Value Thresholding algorithm