Journal Watch
 IEEE Transactions on Signal Processing
 July 01, 2018 and September 01, 2018

Lekshmi Ramesh

Indian Institute of Science
Bangalore

August 11, 2018

On Fundamental Limits of Joint Sparse Support Recovery Using Certain Correlation Priors

Ali Koochakzadeh, Heng Qiao, and Piya Pal

■ Goal: Support recovery of jointly k-sparse signals from multiple measurements:

$$
\mathbf{y}_{i}=A \mathbf{x}_{i} \quad i \in[L]
$$

where $A \in \mathbb{R}^{m \times N}$.

- Contributions
- Analysis of the exhaustive ML-based decoder

Probability of error for this decoder is at most δ provided

$$
\begin{gathered}
k \leq \frac{\operatorname{krank}(A \odot A)}{2} \\
L \geq \frac{1}{\gamma}\left(\log \frac{1}{\delta}+k \log \frac{N}{k}\right)
\end{gathered}
$$

Parameter γ depends on (N, m, k)

- A covariance identifiability condition For $p \in \mathbb{R}_{+}^{k}$ and $A \in \mathbb{R}^{m \times N}$, we have covariance identifiability when

$$
R_{i}=R_{j} \text { if and only if } S_{i}=S_{j} \forall i, j \in[q]
$$

where $q=\binom{N}{k}$ and $R_{i}=A_{S_{i}} \operatorname{diag}(p) A_{S_{i}}^{\top}$.
■ For matrices with iid entries from a continuous distribution, covariance identifiability violated w.h.p. if $k \geq m^{2}+m+2$ and $n \geq 2 k$

Phase Transitions and a Model Order Selection Criterion for Spectral Graph Clustering

Pin-Yu Chen, and Alfred O. Hero

■ Goal: Automated selection of number of clusters in graph clustering problems

- Contributions
- Phase transition of spectral clustering on the Random Interconnection Model (RIM)
- A model order selection method based on the phase transition threshold

■ Random Interconnection Model

- Describes a graph on n nodes with k clusters, with the $i^{\text {th }}$ cluster having size n_{i}. The adjacency matrix has the following form

$$
A=\left[\begin{array}{cccc}
A_{1} & C_{12} & \cdots & C_{1 k} \\
C_{21} & A_{2} & \cdots & C_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n 1} & C_{n 2} & \cdots & A_{k}
\end{array}\right]
$$

where
$A_{i}: n_{i} \times n_{i}$ represents within cluster connections
$C_{i j}: n_{i} \times n_{j}$ represents connections between clusters i and j.
Under RIM: A_{i} are arbitrary, $C_{i j}$ are mutually independent and have $\operatorname{Ber}\left(p_{i j}\right)$ entries.

- The popular stochastic block model is a special case of RIM where A_{i} have iid $\operatorname{Ber}(p)$ entries

Global Optimality in Low-Rank Matrix Optimization

```
Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B. Wakin
```

■ Setup

$$
\begin{aligned}
& \underset{X \in \mathbb{R}^{n \times m}}{\operatorname{minimize}} f(X) \\
& \text { s.t. } \operatorname{rank}(X) \leq r
\end{aligned}
$$

f is smooth

- Factorization approach: decompose X in terms of two smaller matrices as $U V^{\top}$ - reduces computational complexity, introduces non convexity in objective
- Key result: Under certain conditions on f, factored problem has no spurious local minima
- Simple algorithms like gradient descent can provably solve the factored problem with global convergence
- Key assumption on f
- f is restricted strongly convex and smooth, i.e.,

$$
\begin{equation*}
\alpha\|G\|_{F}^{2} \leq\left[\nabla^{2} f(X)\right](G, G) \leq \beta\|G\|_{F}^{2} \tag{1}
\end{equation*}
$$

for all $n \times m X$ and G with rank at most r

Support Recovery From Noisy Random Measurements via Weighted ℓ_{1} Minimization

Jun Zhang, Urbashi Mitra, Kuan-Wen Huang, and Nicolo Michelusi

■ Goal: Analysis of support recovery performance of weighted ℓ_{1} minimization from compressive measurements

$$
\mathbf{y}=A \mathbf{x}+\mathbf{z}
$$

$A \in \mathbb{R}^{m \times N}$ with iid standard normal entries, x is k-sparse, $k<m<N$

- Weighted ℓ_{1}

$$
\underset{\mathbf{x}}{\arg \min }\|A \mathbf{x}-\mathbf{y}\|_{2}^{2}+\lambda \sum_{i=1}^{N} w_{i} x_{i}
$$

Weights can incorporate prior information about \mathbf{x}

■ Contributions

- Exact support recovery via weighted ℓ_{1} minimization if $x_{\text {min }}$ large enough and

$$
\begin{equation*}
m \geq 2 \eta k \log (N-k) \tag{2}
\end{equation*}
$$

where η is a function of the weights

- An algorithm for support recovery based on iterative weighted ℓ_{1} minimization

Other interesting papers

■ Efficient Analysis and Synthesis Using a New Factorization of the Gabor Frame Matrix. S. M. -Picot, F. J. Ferri, M. A.-Herráez, W. D.-Villanueva

■ Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors. D. Kuzin, O. Isupova, L. Mihaylova
■ Joint Detection and Localization of an Unknown Number of Sources Using the Algebraic Structure of the Noise Subspace. M. W. Morency, S. A. Vorobyov, G. Leus

■ Mitigating Quantization Effects on Distributed Sensor Fusion: A Least Squares Approach. S. Zhu, C. Chen, J. Xu, X. Guan, L. Xie, K. H. Johansson

- A Model Selection Criterion for High-Dimensional Linear Regression. A. Owrang, M. Jansson

