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On Fundamental Limits of Joint Sparse Support Recovery Using Certain
Correlation Priors

Ali Koochakzadeh, Heng Qiao, and Piya Pal

Goal: Support recovery of jointly k-sparse signals from multiple
measurements:

yi = Axi i ∈ [L]

where A ∈ Rm×N .

Contributions
Analysis of the exhaustive ML-based decoder
Probability of error for this decoder is at most δ provided

k ≤ krank(A�A)
2

L ≥ 1
γ

(
log 1

δ
+ k log N

k

)
Parameter γ depends on (N,m, k)
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A covariance identifiability condition
For p ∈ Rk

+ and A ∈ Rm×N , we have covariance identifiability when

Ri = Rj if and only if Si = Sj ∀ i, j ∈ [q]

where q =
(N

k

)
and Ri = ASidiag(p)A>Si

.

For matrices with iid entries from a continuous distribution,
covariance identifiability violated w.h.p. if k ≥ m2 +m+ 2 and
n ≥ 2k
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Phase Transitions and a Model Order Selection Criterion for Spectral Graph
Clustering

Pin-Yu Chen, and Alfred O. Hero

Goal: Automated selection of number of clusters in graph
clustering problems

Contributions
Phase transition of spectral clustering on the Random
Interconnection Model (RIM)
A model order selection method based on the phase transition
threshold
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Random Interconnection Model
Describes a graph on n nodes with k clusters, with the ith cluster
having size ni. The adjacency matrix has the following form

A =


A1 C12 · · · C1k

C21 A2 · · · C2k

...
...

. . .
...

Cn1 Cn2 · · · Ak


where
Ai : ni × ni represents within cluster connections
Cij : ni × nj represents connections between clusters i and j.
Under RIM: Ai are arbitrary, Cij are mutually independent and
have Ber(pij) entries.
The popular stochastic block model is a special case of RIM where
Ai have iid Ber(p) entries
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Global Optimality in Low-Rank Matrix Optimization

Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B. Wakin

Setup

minimize
X∈Rn×m

f(X)

s.t. rank(X) ≤ r

f is smooth

Factorization approach: decompose X in terms of two smaller
matrices as UV >– reduces computational complexity, introduces
non convexity in objective

Key result: Under certain conditions on f , factored problem has
no spurious local minima
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Simple algorithms like gradient descent can provably solve the
factored problem with global convergence

Key assumption on f

f is restricted strongly convex and smooth, i.e.,

α‖G‖2
F ≤ [∇2f(X)](G,G) ≤ β‖G‖2

F (1)

for all n×m X and G with rank at most r

7 / 10



Support Recovery From Noisy Random Measurements via Weighted `1
Minimization

Jun Zhang, Urbashi Mitra, Kuan-Wen Huang, and Nicolo Michelusi

Goal: Analysis of support recovery performance of weighted `1
minimization from compressive measurements

y = Ax + z

A ∈ Rm×N with iid standard normal entries, x is k-sparse,
k < m < N

Weighted `1

arg min
x

‖Ax− y‖22 + λ
N∑

i=1
wixi

Weights can incorporate prior information about x
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Contributions
Exact support recovery via weighted `1 minimization if xmin large
enough and

m ≥ 2ηk log(N − k) (2)

where η is a function of the weights
An algorithm for support recovery based on iterative weighted `1
minimization
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