Journal Watch
 IEEE Transactions on Signal Processing (December 01, 2016)

Lekshmi Ramesh

Signal Processing for Communications Lab IISc, Bangalore

December 3, 2016

- Goal: Joint sparse recovery with statistically related supports

■ Setup: $\Phi_{k} \in \mathbb{R}^{n_{k} \times m}, w_{k} \sim \mathcal{N}(0, I)$

$$
y_{k}=\Phi_{k} x_{k}+w_{k}, \quad k \in[L] .
$$

Structured sparsity models

■ Convex methods (by relaxing the following formulations)

$$
\begin{aligned}
\min _{X} \sum_{k=1}^{L}\left\|\Phi_{k} x_{k}-y_{k}\right\|_{2}^{2}+\alpha_{1} \sum_{k=1}^{L}\left\|x_{k}\right\|_{0}+\alpha_{2}\|X\|_{0, \text { row }} & \text { SSM-1 } \\
\min _{C, S} \sum_{k=1}^{L}\left\|\Phi_{k}\left(c_{k}+s_{k}\right)-y_{k}\right\|_{2}^{2}+\beta_{1} \sum_{k=1}^{L}\left\|s_{k}\right\|_{0}+\beta_{2}\|C\|_{0, \text { row }} & \text { SSM-2 }
\end{aligned}
$$

- Contributions
- SBL for structured sparsity models using a dual-space view of the convex penalties. For e.g.,

$$
\left\|x_{k}\right\|_{1}=\min _{\gamma_{k j}^{a} \geq 0} \frac{1}{2} \sum_{j} \frac{x_{k j}^{2}}{\gamma_{k j}^{a}}+\gamma_{k j}^{a} .
$$

- Centralized and decentralized algorithms for solving the SSM recovery problem

Robust Volume Minimization-Based Matrix Factorization for Remote Sensing and Document Clustering
X. Fu, K. Huang, B. Yang, W. K. Ma and N. D. Sidiropoulos

- Goal: Structured matrix factorization (SMF) using volume minimization
- Background, Setup
- Data matrix $=$ Basis matrix \times Coefficient matrix Columns of one factor matrix lie on the unit simplex
- Applications in document clustering, remote sensing
- Key question: Identifiability of factor matrices
- Model:

$$
x_{i}=A s_{i}+v_{i}, \quad i \in[L]
$$

with $A \in \mathbb{R}^{M \times K}$, noise $v_{i}, s_{i} \geq 0$, and $\mathbf{1}^{\top} s_{i}=1$.

- SMF: Factor X into A and S.

VolMin criterion:

$$
\begin{aligned}
\left(A, s_{i}\right) & =\underset{B, c_{i}}{\arg \min \operatorname{vol}(B)} \\
\text { s.t. } x_{i} & =B c_{i}, \\
\mathbf{1}^{\top} c_{i} & =1, c_{i} \geq 0 .
\end{aligned}
$$

Find minimum-volume simplex that encloses all columns of data matrix

- Contributions
- Proposed an algorithm based on alternating minimization to solve VolMin
- Showed equivalence of two previously known conditions for identifiability

Orthogonal Sparse PCA and Covariance Estimation via Procrustes Reformulation
K. Benidis, Y. Sung, P. Babu and D. Palomar

■ Goal: Estimate sparse eigenvectors of a symmetric matrix
■ Setup: Orthogonal sparse PCA problem

- Data matrix $A \in \mathbb{R}^{n \times m}$, sample covariance $S=A^{\top} A$

$$
\begin{array}{r}
\underset{u}{\operatorname{maximize}} u^{\top} S u-\rho\|u\|_{0} \\
\text { subject to } u^{\top} u=1
\end{array}
$$

To extract multiple eigenvectors,

$$
\begin{array}{r}
\underset{U}{\operatorname{maximize}} \operatorname{Tr}\left(U^{\top} S U D\right)-\sum_{i=1}^{q} \rho\left\|u_{i}\right\|_{0} \\
\text { subject to } U^{\top} U=I_{q}
\end{array}
$$

■ Non convex objective, non convex feasible set

- Convexify objective, use minorization-maximization
- Solve a sequence of Procustes problems

$$
\begin{array}{r}
\underset{X}{\operatorname{minimize}}\|X-Y\|_{F}^{2} \\
\text { subject to } X^{\top} X=I
\end{array}
$$

■ Contributions
■ New method to estimate dominant sparse eigenvectors, under orthogonality constraint

- An algorithm for estimating the covariance matrix when its eigenvectors are known to be sparse

Other interesting papers

- Noisy Compressive Sampling Based on Block-Sparse Tensors: Performance Limits and Beamforming Techniques. R. Boyer and M. Haardt
- Learning Laplacian Matrix in Smooth Graph Signal Representations. X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst
■ Proximal Multitask Learning Over Networks With Sparsity-Inducing Coregularization. R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed

