Journal Watch IEEE Transaction on Vehicular Technology, July 16

K Mohan Babu SPC Lab

06 August, 2016

1. Generalized Space-and-Frequency Index Modulation

Authors: Tanumay Datta, Harsha S. Eshwaraiah and A. Chockalingam

Goal: To acheive high Spectral efficiency in Multiantenna wireless system.

1. Generalized spatial Index Modulation (GSIM)

Achievable Rates

$$R_{gsim} = \underbrace{\lfloor \log_2 \binom{n_t}{n_{rf}} \rfloor}_{\text{Antenna index bits}} + \underbrace{\log_2 \binom{n_t}{n_{rf}}}_{\text{Mot}}$$

 $n_{rf} \log_2 M$ dulation Symbol bits

where.

n_{rf}: No. of RF chains, n_t : No. of transmit antenna and

M : Size of modulation symbol.

Detection

ML detection,

$$\hat{x} = x \in U ||y - Hx||^2$$

$$U = \{x | x \in A_0^{n_t \times 1}, ||x||_0 = n_{rf}, t^x \in S\}$$

For medium and large values of n_t and n_{rf} , brute-force computation of x becomes computationally prohibitive.

Solution

bpcu

Low-Complexity Algorithm: Gibbs sampling.

GSFIM

Encodes bits through indexing in both spatial and frequency domains.

2. Optimum Energy- and Spectral-Efficient Transmissions for Delay-Constrained Hybrid ARQ Systems

Authors: Gang Wang, Jingxian Wu and Yahong Rosa Zheng

Goal: To have balanced trade-off between Energy Efficiency (EE) and Spectral Efficiency (SE).

- Metric:1 EE, Average energy required to successfully deliver one information bit from a source to its destination
- Metric:2 SE defined as the effective data rate per unit bandwidth
- Metric:3 SE normalized energy per bit (E_m)
 - Delay constrained: Only K retransmissions are allowed
 - Coded HARQ with Chase combining
 - Practical system parameters are considered.

Optimum Energy distribution to maximize EE

Avg. Energy per information bit,

minimize
$$E_t$$
 w.r.t. $\gamma_1, \gamma_2, \cdots, \gamma_K \ge 0$
s.t. $\sum_{k=1}^{K} \gamma_k \ge -\frac{\gamma_w}{\log(1-\delta)}$
where $\gamma = [\gamma_1, \cdots, \gamma_K]^T$, γ_w is a threshold and γ_b is the Avg. E_b/N_0 at receiver

Optimization problem is solved using Karush-Kuhn-Tucker (KKT) conditions.

$$\eta_s = \frac{L_b}{L_b + L_0} \frac{r \log_2 M}{1 + \alpha} \sum_{k=1}^K \frac{1}{k} \exp(-\frac{\gamma_w}{\sum_{j=1}^k} \gamma_j) \times \prod_{i=1}^{k-1} \left[1 - \exp(-\frac{\gamma_w}{\sum_{j=1}^k} \gamma_j) \right]$$

Energy distribution to maximize SE, $\gamma = [\gamma_0, 0, \dots, 0]$, The system that maximizes η_s allocates all the energy to the first transmission attempt.

Energy distribution to achieve a balanced tradeoff between EE and SE

 $E_m = E_t/\eta_s$, Metric E_m can be reduced by either decreasing E_t or increasing η_s .

- This optimization problem is solved using Iterative backward sequential calculation algorithm.
- The minimization of *E_m* provides a balanced tradeoff between EE and SE.
- The *E_m*-reducing system can increase the SE of with only negligible cost in terms of EE.

K Mohan Babu SPC Lab

3. Opportunistic Energy-Aware Amplify-and-Forward Cooperative Systems With Imperfect CSI.

Authors: Osama Amin, Ebrahim Bedeer, Mohamed Hossam Ahmed, Octavia A. Dobre and Mohamed-Slim

Alouini

Goal: To maximize the Energy Efficiency in oppurtunistic cooperative system.

Channel Estimation

- Disintegrated channel estimation (DCE).
- Cascaded channel estimation (CCE).

Energy Efficiency, $\eta = \frac{S}{P_T}$ $\eta_{OAF} = max(\eta_{DT}, \eta_{TH}, \eta_{CT})$

$$\max_{P_s} \eta_{DT} = \frac{\log_2(1 + \frac{\gamma_{SD}P_s}{\epsilon_{SD}P_s + 1})}{k_s P_s + P_{c,DT} + P_{CE,DT}}$$
$$s.t. \ 0 \le P_s \le P_{s,max}$$

Dinkelbach Method:converts the fractional pseudoconcave objective function into a concave function

- Online Precoding for Energy Harvesting Transmitter With Finite-Alphabet Inputs and Statistical CSI.
- Kernel-Based Adaptive Online Reconstruction of Coverage Maps With Side Information.
- Distributed Linear Precoding and User Selection in Coordinated Multicell Systems
- Joint Optimization Methods for Nonconvex Resource Allocation Problems of Decode-and-Forward Relay-Based OFDM Networks.