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HARQ	and	AMC:	Friends	or	Foes?

• R.	Sassioui,	M.	Jabi,	L.	Szcecinski,	L.	B.	Le,	M.	Benjillali,	B.	
Pelletier

• Benefits	of	combining	AMC	and	HARQ	w.r.t.	throughput
• Slow	fading	channels:	HARQ	improves	the	throughput	of	AMC	

but	only	marginally	(slightly	better	when	AMC	accounts	for	
HARQ	in	its	design)

• Fast	fading	channels:	HARQ	beneficial	at	low	SNRs,	but	
detrimental	to	AMC	at	high	SNRs	(when	the	AMC	is	designed	
without	considering	HARQ)

• Modification	of	HARQ:	terminate	it	depending	on	the	AMC	
index	– requires	no	change	of	AMC	protocol	and	prevents	loss	
of	throughput	in	fast	fading	channels



Tightness	of	Jensen’s	Bounds	and	Applications	
to	MIMO	Communications	

• J.	Yuan,	M.	Matthaiou,	S.	Jin,	F.	Gao
• MIMO	capacity	bounds:	typically	use	Jensen’s	inequality

– Too	hard	to	manipulate	log(1+eigenvalue)	expression

• Study	the	tightness	of	Jensen’s	inequality	via	“sandwich	thm.”
– A.	H.	Stone	and	J.	W.	Tukey,	“Generalized	sandwich	theorems,”	Duke	

Math.	J.,	vol.	9,	no.	2,	pp.	356–359,	Jun.	1942.

• How	is	Jensen’s	used?

• Analyze	the	gap	between	the	upper	and	lower	bounds	using	
new	results	on	finite	dimensional	Wishart matrices
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σ 2 is the average SNR, and λ is the single unordered

eigenvalue of !. Assuming fλ (!) is the marginal probability
distribution function (pdf) of the unordered eigenvalue λ, we
reformulate (7) as
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This is the general capacity formula of SU-MIMO systems
which encompasses many MIMO channels. However, in most
cases of interest, it is really complicated, if not impossible, to
evaluate analytically the theoretic expression in (8). Thus, for
convenience, many prior works (see [22]–[24], [41]) choose
to characterize the ergodic capacity via its upper/lower bounds
using Jensen’s inequality. In what follows, we elaborate on the
tightness of Jensen’s bounds and provide important insights
into their ability to approximate the exact MIMO capacity.
B. MU-MIMO Systems

We now consider a MU-MIMO MRC system with N single-
antenna users and an M-antenna BS, where each user transmits
its signal to the BS in the same time-frequency channel.
Assuming the system is single-cell with no interference from
neighboring cells, the received complex vector can be writ-
ten as [4]

ymu =
√

PmuGx + n, (9)

where n is a vector of Gaussian noise defined as in (1),√
Pmux represents the N ×1 vector containing the transmitted

signals from all users, and x is an i.i.d. zero-mean Gaussian
distributed random vector of unit variance, Pmu denotes the
average transmitted power of each user, and G is the M × N
MIMO channel matrix between the BS and the N users, which
embraces independent fast fading, geometric attenuation and
log-normal shadow fading [3], given as

G = HB1/2, (10)

where H is the the fast fading matrix, whose element {H}i, j
represents the channel from j th user to the i th antenna of
the BS with {H}i, j ∼ CN (0, 1), while B is the N × N
diagonal matrix with {B} j, j = β j representing the large-scale
fading (LSF) coefficient, which is assumed to be constant
across the antenna array.

We consider the case that the BS has perfect CSI and
deploys MRC receiver. Thus, the received signal vector at the
BS is given by

r =
√

PmuGH Gx + GH n. (11)

By the law of matrix multiplication, the spectral efficiency (in
bit/s/Hz) of the j th user is given by [4]
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σ 2 represents

the SNR. Conditioned on g j , g̃k is a Gaussian RV with
zero mean and variance βk which does not depend on g j .
Therefore, g̃k is Gaussian distributed and independent of g j
with g̃k ∼ CN (0,βk).

III. GENERAL ANALYSIS FRAMEWORK FOR THE

TIGHTNESS OF JENSEN’S BOUNDS

In this section, we consider two pairs of Jensen’s bounds
and quantify rigorously their offsets against the SNR. Note
that these two pairs of bounds have been extensively applied in
characterizing the capacity of MIMO systems (see [23], [35]).
Noting the fact that the evaluation of ergodic capacity can
be reduced from the matrix problem in (6) into a real-valued
scalar problem in (7), we first define two pairs of Jensen’s
bounds for our general framework as
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It is important to note that J1 and J2 can be easily derived
via the convexity or concavity of the corresponding functions,
respectively. To evaluate the tightness of the pairs of bounds,
we measure the offsets between the corresponding upper and
lower bounds in J1 and J2.

Theorem 1: Let ! be a m × m matrix as in (4) with
unordered eigenvalue λ. The offsets of the two pairs of bounds
defined in (13) and (14) are given by
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Proof: The result can be derived directly by subtracting
the lower bound from the upper bound in (13) and (14),
respectively.

It is important to note that this result holds for arbitrary
number of antennas and SNR. Since the offsets vary according
to the statistical characteristics of the unordered eigenvalue, the
tightness of both pairs of bounds is different for each MIMO
channel. We now investigate the tightness of the proposed
bounds as a function of the SNR. We compare the two offsets
and determine which admits the smallest value depending on
a SNR threshold.

Corollary 1: Define ρt as the threshold such that
{

%1 " %2, ρ " ρt ,

%1 > %2, ρ > ρt ,
(17)
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Transmit	Beamforming	and	Power	Control	for	
Optimizing	the	Outage	Probability	Fairness	

in	MISO	Networks

• X.	Zhai,	C.	W.	Tan,	Y.	Huang,	B.	D.	Rao
• Joint	beamforming	and	power	control	in	MU-MISO	with	only	

channel	distribution	information,	i.e.,	covariance	matrices	
• Minimize	max.	outage	prob.	under	wtd.	sum	power	constraint
• Nonconvex	and	nonlinear	problem

– Assuming	a	fixed	beamformer set,	use	nonlinear	Perron-Frobenius
theory	to	design	a	decentralized	algorithm	to	compute	optimal	power	

– “Certainty-equivalent	margin	counterpart”	with	outage-mapped	
thresholds:	decouples	the	beamformer and	power	variables.	

– Yields	a	near-optimal	feasible	beamformer and	power	allocation



A	Novel	Hybrid	Beamforming	Algorithm	With	Unified	
Analog	Beamforming	by	Subspace	Construction	Based	

on	Partial	CSI	for	Massive	MIMO-OFDM	Systems	
• D.	Zhu,	B.	Li,	P.	Liang
• Claim:	previous	hybrid	BF	useful	for	single-user	systems;	does	

not	extend	to	multiple	users	served	on	different	subcarriers
– Analog	BF	part	is	common	to	all	users	and	all	subcarriers

• Propose	HB	algo:	analog	part	based	on	covariance	info
– Achieves	95%	performance	of	full	digital	BF

• Algo for	estimating	the	spatial	covariance	matrix
– Achieves	97%	performance	of	perfect	SCM	case

• Useful	in	TDD	and	FDD



On	Adaptive	Power	Control	for	Energy	Harvesting	
Communication	Over	Markov	Fading	Channels	

• M.	B.	Khuzani,	H.	E.	Saffar,	P.	Mitran

On	Optimality	of	Myopic	Policy	in	Multi-Channel	
Opportunistic	Access	

• K.	Wang,	L.	Chen,	J.	Yu

Low	Complexity	Iterative	Receiver	Design	
for	Sparse	Code	Multiple	Access	

• F.	Wei	and	W.	Chen


