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Complete Dictionary Learning Over the Sphere

Ju Sun, Qing Qu and John Wright

Goal: Given p samples from Rn, Y = [y1, . . . , yp], find a concise
representation for these samples. That is, find:
a complete (square and invertible) matrix A ∈ Rn×n,
and a sparse coefficient matrix X ∈ Rn×p,
such that Y ≈ AX when n < p.

Usual approach
min
A,X

‖Y −AX‖2F + λ‖X‖1

s.t. A ∈ A

Objective non convex in A,X; A typically non convex too
For a permutation matrix Π and a diagonal matrix Σ with diagonal
entries in {+1,−1}:
(A,X) and (AΠΣ,Σ−1Π>X) result in the same objective value:
combinatorially many global minima
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A different formulation:
Rowspace(Y) = Rowspace(X), rows of X are sparse vectors in the
known subspace Rowspace(Y)

First recover rows of X, then recover A

min
q
‖q>Y ‖0 s.t. q>Y 6= 0

Replace above formulation with a convex objective and a spherical
constraint

min
q

1
p

p∑
i=1

hµ(q>yi) s.t. ‖q‖2 = 1,

where hµ: a convex, smooth appproximation to |.|
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Contributions
Geometric characterization of the objective, explanation for the
effectiveness of non convex heuristics

First efficient algorithm that provably recovers A,X where X can
have O(n) non zeros per column

Under the assumption that Xij = ΩijVij , with Ωij ∼ Ber(θ) and
Vij ∼ N (0, 1) (denoted X0

iid∼ BG(θ)):

For θ ∈ (0, 1
3 ), given Y = A0X0 with A0 a complete dictionary and

X0
iid∼ BG(θ), there exists a polynomial-time algorithm that

recovers A0 and X0 (upto sign, scale and permutation) with high
probability.
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Bayesian Group Testing Under Sum Observations: A Parallelizable
Two-Approximation for Entropy Loss

Weidong Han, Purnima Rajan, Peter I. Frazier and Bruno M. Jedynak

Setup
θ ∈ Rk containing locations of k objects, k ≥ 1 is known

Choose subsets Ai of R, query the number of objects in each subset
and obtain a sequence {Xi} of noiseless answers

Formally, for the nth question An, the answer Xn is

Xn = 1An(θ1) + . . .+ 1An(θk)

Bayesian setting: θi
iid∼ f0 with joint density p0 = Πk

i=1f0(θi)

Goal: Devise a method for choosing questions so that θ can be
found as accurately as possible form a finite budget of questions
(accuracy measured in terms of entropy of posterior distribution of
θ)
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Prior work
k = 1 case: noiseless, noisy, Bayesian setting considered

k > 1 case: Group testing: “Is A ∩ S 6= φ?”
Subset guessing: “Is S ⊂ A?”

Binary answers, non-Bayesian setting

Contributions
A non-adaptive dyadic policy and an adaptive greedy policy for
noiseless group testing under sum observations.
Both algorithms based on minimizing the expected entropy of the
posterior on θ.
Dyadic policy: shown to be optimal among non adaptive policies
Greedy policy: at least as good as dyadic policy, strictly better in
some cases.
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The dyadic policy

Prior density f0 with support [0, 1]. The question set An is the union of
the shaded subsets.
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Sparse Signal Processing with Linear and Non-Linear Observations: A Unified
Shannon-Theoretic Approach

Cem Aksoylar, George K. Atia and Venkatesh Saligrama

Setup
Set of N variables/features X1, . . . , XN , outcome Y (both known)

Only k variables, indexed by S ⊂ [N ] (unknown), relevant for
predicting outcome Y

Latent random quantity βS affecting observations

P (Y |X,βS , S) = P (Y |XS , βS , S)

Goal: Given T sample pairs {Xi, Yi}Ti=1, observation model
P (Y |XS , βS , S) and prior p(βS), find necessary and sufficient
conditions on T in order to recover S with arbitrarily small error
probability
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Contributions
Necessary and sufficient conditions on T for various sparsity models
(sparse linear regression, binary regression, group testing, models
with missing data)
Results for both linear and non-linear models in a unifying manner

9 / 10



Other interesting papers

Sensing Tensors With Gaussian Filters. S. Chrétien and T. Wei
Blind Recovery of Sparse Signals From Subsampled Convolution.
K. Lee, Y. Li, M. Junge, and Y. Bresler
Compressive Sampling Using Annihilating Filter-Based Low-Rank
Interpolation. J. C. Ye, J. M. Kim, K. H. Jin, and K. Lee
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