Journal Watch

IEEE Transactions on Information Theory (February, 2017)

Lekshmi Ramesh

Signal Processing for Communications Lab IISc, Bangalore

April 22, 2017

Complete Dictionary Learning Over the Sphere

```
Ju Sun, Qing Qu and John Wright
```

■ Goal: Given p samples from $\mathbb{R}^{n}, Y=\left[y_{1}, \ldots, y_{p}\right]$, find a concise representation for these samples. That is, find:
a complete (square and invertible) matrix $A \in \mathbb{R}^{n \times n}$, and a sparse coefficient matrix $X \in \mathbb{R}^{n \times p}$, such that $Y \approx A X$ when $n<p$.

■ Usual approach

$$
\begin{aligned}
& \min _{A, X}\|Y-A X\|_{F}^{2}+\lambda\|X\|_{1} \\
& \text { s.t. } A \in \mathcal{A}
\end{aligned}
$$

- Objective non convex in $A, X ; \mathcal{A}$ typically non convex too
- For a permutation matrix Π and a diagonal matrix Σ with diagonal entries in $\{+1,-1\}$:
(A, X) and $\left(A \Pi \Sigma, \Sigma^{-1} \Pi^{\top} X\right)$ result in the same objective value: combinatorially many global minima
- A different formulation:
- Rowspace $(\mathrm{Y})=$ Rowspace (X), rows of X are sparse vectors in the known subspace Rowspace(Y)
- First recover rows of X, then recover A

$$
\min _{q}\left\|q^{\top} Y\right\|_{0} \quad \text { s.t. } \quad q^{\top} Y \neq 0
$$

- Replace above formulation with a convex objective and a spherical constraint

$$
\min _{q} \frac{1}{p} \sum_{i=1}^{p} h_{\mu}\left(q^{\top} y_{i}\right) \text { s.t. }\|q\|_{2}=1
$$

where h_{μ} : a convex, smooth appproximation to |.|

- Contributions
- Geometric characterization of the objective, explanation for the effectiveness of non convex heuristics

■ First efficient algorithm that provably recovers A, X where X can have $O(n)$ non zeros per column

- Under the assumption that $X_{i j}=\Omega_{i j} V_{i j}$, with $\Omega_{i j} \sim \operatorname{Ber}(\theta)$ and $V_{i j} \sim \mathcal{N}(0,1)$ (denoted $\left.X_{0} \stackrel{i i d}{\sim} B G(\theta)\right)$:
For $\theta \in\left(0, \frac{1}{3}\right)$, given $Y=A_{0} X_{0}$ with A_{0} a complete dictionary and $X_{0} \stackrel{i i d}{\sim} B G(\theta)$, there exists a polynomial-time algorithm that recovers A_{0} and X_{0} (upto sign, scale and permutation) with high probability.

Bayesian Group Testing Under Sum Observations: A Parallelizable Two-Approximation for Entropy Loss

Weidong Han, Purnima Rajan, Peter I. Frazier and Bruno M. Jedynak

■ Setup

- $\theta \in \mathbb{R}^{k}$ containing locations of k objects, $k \geq 1$ is known
- Choose subsets A_{i} of \mathbb{R}, query the number of objects in each subset and obtain a sequence $\left\{X_{i}\right\}$ of noiseless answers
- Formally, for the $n^{\text {th }}$ question A_{n}, the answer X_{n} is

$$
X_{n}=\mathbb{1}_{A_{n}}\left(\theta_{1}\right)+\ldots+\mathbb{1}_{A_{n}}\left(\theta_{k}\right)
$$

- Bayesian setting: $\theta_{i} \stackrel{i i d}{\sim} f_{0}$ with joint density $p_{0}=\Pi_{i=1}^{k} f_{0}\left(\theta_{i}\right)$

■ Goal: Devise a method for choosing questions so that θ can be found as accurately as possible form a finite budget of questions (accuracy measured in terms of entropy of posterior distribution of $\theta)$

■ Prior work

- $k=1$ case: noiseless, noisy, Bayesian setting considered
- $k>1$ case: Group testing: "Is $A \cap S \neq \phi$?" Subset guessing: "Is $S \subset A$?"
Binary answers, non-Bayesian setting
■ Contributions
- A non-adaptive dyadic policy and an adaptive greedy policy for noiseless group testing under sum observations. Both algorithms based on minimizing the expected entropy of the posterior on θ.
- Dyadic policy: shown to be optimal among non adaptive policies Greedy policy: at least as good as dyadic policy, strictly better in some cases.

The dyadic policy

Prior density f_{0} with support $[0,1]$. The question set A_{n} is the union of the shaded subsets.

Sparse Signal Processing with Linear and Non-Linear Observations: A Unified Shannon-Theoretic Approach

Cem Aksoylar, George K. Atia and Venkatesh Saligrama

■ Setup
■ Set of N variables/features X_{1}, \ldots, X_{N}, outcome Y (both known)
■ Only k variables, indexed by $S \subset[N]$ (unknown), relevant for predicting outcome Y

- Latent random quantity β_{S} affecting observations

$$
P\left(Y \mid X, \beta_{S}, S\right)=P\left(Y \mid X_{S}, \beta_{S}, S\right)
$$

- Goal: Given T sample pairs $\left\{X_{i}, Y_{i}\right\}_{i=1}^{T}$, observation model $P\left(Y \mid X_{S}, \beta_{S}, S\right)$ and prior $p\left(\beta_{S}\right)$, find necessary and sufficient conditions on T in order to recover S with arbitrarily small error probability

■ Contributions

- Necessary and sufficient conditions on T for various sparsity models (sparse linear regression, binary regression, group testing, models with missing data)
- Results for both linear and non-linear models in a unifying manner

Other interesting papers

- Sensing Tensors With Gaussian Filters. S. Chrétien and T. Wei

■ Blind Recovery of Sparse Signals From Subsampled Convolution. K. Lee, Y. Li, M. Junge, and Y. Bresler

■ Compressive Sampling Using Annihilating Filter-Based Low-Rank Interpolation. J. C. Ye, J. M. Kim, K. H. Jin, and K. Lee

