Journal Watch
 IEEE Transactions on Information Theory June 2014

Geethu Joseph
SPC Lab, IISc
June 7, 2014

Group Testing Algorithms: Bounds and Simulations
 Matthew Aldridge, Leonardo Baldassini, and Oliver Johnson

- Problem: Non-adaptive noiseless group testing of N items of which $K(\ll N)$ are defective
- require no knowledge of K, or even bounds on K
- Existing Algorithm: Combinatorial Orthogonal Matching Pursuit (COMP)
- find guaranteed not defective set $\mathcal{N D}$;
- $\hat{\mathcal{K}}_{\text {COMP }}=\mathcal{P D}=\mathcal{N D}{ }^{\text {C }} ; \hat{K}_{\text {COMP }} \supseteq \mathcal{K}$
- Proposed Algo1: Definite Defectives (DD)
- an item $i \in \hat{\mathcal{K}}_{\text {DD }}$ if i is the only element from $\mathcal{P D}$ included in a positive test
- $\hat{\mathcal{K}}_{\mathrm{DD}} \subseteq \mathcal{K}$

Group Testing Algorithms: Bounds and Simulations

- Proposed Algo2: Sequential COMP
- terminate if group testing with defective set $\hat{\mathcal{K}}_{\text {SCOMP }}$, lead to correct outcomes
- else add $i \in \mathcal{P D}$ which appears in the largest number of tests which are unexplained by $\hat{\mathcal{K}}$
- Proposed Algo3: Smallest Satisfying Set (SSS)
- $\min \mathbf{1}^{\top} \boldsymbol{z}^{*}$ s.t $\boldsymbol{X}^{*} \boldsymbol{z}^{*} \geq 1$ and $\boldsymbol{z}^{*} \in\{0,1\}^{\left|\mathcal{N}^{*}\right|}$;

$$
\mathcal{N}^{*}=\mathcal{N} /\left(\mathcal{N D} \cup \hat{\mathcal{K}}_{\mathrm{DD}}\right)
$$

- Achievable rates $\left(=\binom{N}{K} / T\right)$ with Bernoulli tests: $K=N^{1-\beta}$
- $R_{\mathrm{COMP}} \geq 0.53 \beta ; R_{\mathrm{SSS}} \leq 0.53 \frac{\beta}{1-\beta} ; R_{\mathrm{SCOMP}} \geq R_{\mathrm{DD}}$
- $R_{\mathrm{DD} \geq} \geq^{0.53 \min \left\{1, \frac{\beta}{1-\beta}\right\}: \text { optimal for } \beta \leq 0.5}$

Interference Alignment With Diversity for the 2×2 X-Network With Four Antennas

 Abhinav Ganesan and B. Sundar Rajan

 Abhinav Ganesan and B. Sundar Rajan}

- (K, J, M) X-Network
- Gaussian interference network
- J receivers require one independent message from each of the K transmitters
- M antennas at each node

System Model.

- sum-capacity $\approx d \log _{2}$ SNR $+o\left(\log _{2} S N R\right)$, where d is sum DoF

Interference Alignment With Diversity for the 2×2 X-Network With Four Antennas

- Assumptions: Global CSIR and local CSIT
- Proof of sum DoF of $\frac{8}{3}$ by the Li-Jafarkhani-Jafar(LJJ) scheme - $(2,2,2)$ X-Network
- using the Alamouti code and appropriate channel dependent precoding
- the real and imaginary parts of the channel gains are distributed independently according to an arbitrary continuous distribution
- Extend the LJJ scheme to $(2,2,4)$ X-Network
- using SR code possesses a repetitive Alamouti structure upto scaling by a constant
- achieves the maximum possible sum DoF of $\frac{16}{3}\left(=\frac{4 M}{3}\right)$
- achieves a diversity gain ≥ 4, when fixed finite constellations appropriate rotation at each Tx

Other Papers

- The Approximate Sum Capacity of the Symmetric Gaussian K-User Interference Channel
- O. Ordentlich, U. Erez, and B. Nazer
- Interference Channels With Coordinated Multipoint Transmission: Degrees of Freedom, Message Assignment, and Fractional Reuse
- A. El Gamal, V. S. Annapureddy, and V. V. Veeravalli
- Impact of Feedback and Side-Information on the Asymptotic Capacity of Single-Input Multiple-Output Fading Channels With Memory
- S. M. Moser
- On the Capacity of the Half-Duplex Diamond Channel Under Fixed Scheduling
- H. Bagheri, A. S. Motahari, and A. K. Khandani

