Journal Watch: IEEE Transactions on Information theory, September 2014

Mohit Sharma

Signal Processing for communication Lab. Department of ECE, IISc

August 30, 2014

(日) (日) (日) (日) (日) (日) (日)

The Degrees of Freedom of MIMO Networks With Full-Duplex Receiver Cooperation but no CSIT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Authors: Chinmay S. Vaze and Mahesh K. Varanasi

System Model

MIMO IC with receiver cooperation

$$\begin{aligned} Y_1(t) &= H_{11}(t)X_1(t) + H_{12}(t)X_2(t) + G_{12}(t)X_{R2}(t) + W_1(t) \\ Y_2(t) &= H_{21}(t)X_1(t) + H_{22}(t)X_2(t) + G_{21}(t)X_{R1}(t) + W_2(t) \end{aligned}$$

MIMO BC with receiver cooperation

$$Y_1(t) = H_1(t)X(t) + G_{12}(t)X_{R2}(t) + W_1(t)$$

$$Y_1(t) = H_2(t)X(t) + G_{21}(t)X_{R1}(t) + W_2(t)$$

- Each receiver has perfect knowledge of all channel metrices, except of the one cooperative link which originates from it to the other receiver
- Full-duplex receiver cooperation
- No CSIT

Results

In general for IC with no receiver cooperation,

$$\boldsymbol{D}^{no} \subseteq \boldsymbol{D}^d \subseteq \boldsymbol{D}^S \subseteq \boldsymbol{D}^{p\&\:i} = \boldsymbol{D}^{coop}$$

- With perfect and instantaneous CSIT, receiver cooperation doesn't enhance the DoF, compared to half-duplex receivers.
- With no CSIT receiver cooperation appears to yield most of the gains promised by delayed CSIT, or even Shannon feedback.
- DoF benefits with receiver cooperation are realized using retro-cooperative interference alignment scheme.
- These schemes are DoF-region optimal for certain classes of MIMO ICs and BCs
- The outer bounds provided for DoF do not appear to be tight for unequal number of antennas at the receiver.

Feasibility of Interference Alignment for the MIMO Interference Channel

Authors: Guy Bresler, Dustin Cartwright and David Tse

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

System Model

K-user MIMO interference channel

- Cadambe and Jafar: For time-varying or frequency selective channels with *unbound diversity*, total degrees of freedom are ^K/₂, i.e., DoF/per-user *independent* of *K*.
- How diversity affects the ability to align interference?
- Goal: Impact of spatial diversity on interference alignment

(日) (日) (日) (日) (日) (日) (日)

- No time or frequency diversity
- Linear precoding scheme

Results

Problem Statement: Given a number of user K, number of antennas M₁..., M_K and N₁,..., N_K, and desired subspace dimensions d₁,..., d_K. Find subspaces U₁,..., U_K with the desired dimensions s.t.

$$\mathbf{H}^{[ij]} U_j \perp U_i, 1 \leq i, j \leq K, i \neq j$$

- Total degrees of freedom with only spatial diversity is two.
- Necessary conditions for alignment and a achievable linear precoding scheme is provided for symmetric K = 3.
- For $K \ge 3$, $d_i = d$, and $M_i = N_i = N$ for all users *i*, there is a feasible strategy iff $2N \ge (K + 1)d$
- Achievable DoF for fully symmetric is also provided.

An Improved RIP-based Performance Guarantee for Sparse Signal Recovery Via Orthogonal Matching Persuit

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Authors: Ling-Hua Chang and Jwo-Yuh Wu

Earlier Result

Signal model:

$$\mathbf{y} = \Phi \mathbf{x} + \mathbf{w}$$

- OMP with stopping criteria
- Wu, Huang, and Chen, 2013
 - 1 (ℓ_2 -bounded noise): Under $||\mathbf{w}||_2 \le \epsilon_1$, and stopping criterion $||\mathbf{r}^j||_2$, the support of the *K*-sparse signal \mathbf{x} can be identified if $\delta_{K+1} < \frac{1}{\sqrt{K+1}}$ and the non zero entries satisfies

$$\min_{i \in T} |(\mathbf{x})_i| > \frac{(\sqrt{1 + \delta_{K+1}} + 1)\epsilon_1}{1 - \delta_{K+1} - \sqrt{K}\delta_{K+1}}$$

2 (ℓ_{∞} -bounded noise): If $||\Phi^* \mathbf{w}||_{\infty} \leq \epsilon_2$, and stopping criteria $||\Phi^* \mathbf{r}^j||_{\infty} \leq \epsilon_2$, then for exact support recovery

$$\min_{i \in T} |(\mathbf{x})_i| > \frac{(\sqrt{\delta_{K+1}} + 1)\sqrt{K}\epsilon_2}{1 - \delta_{K+1} - \sqrt{K}\delta_{K+1}}$$

Improved Results

1 (
$$\ell_2$$
-bounded noise): $\delta_{K+1} < \frac{\sqrt{4K+1}-1}{2K}$ and
 $\min_{i\epsilon T} |(\mathbf{x})_i| > \frac{(\sqrt{1+\delta_{K+1}}+1)\epsilon_1}{1-\delta_{K+1}-\sqrt{1-\delta_{K+1}}\sqrt{K}\delta_{K+1}}$
2 (ℓ_∞ -bounded noise): $\min_{i\epsilon T} |(\mathbf{x})_i| > \frac{(\sqrt{K}+1)\epsilon_2}{1-\delta_{K+1}-\sqrt{1-\delta_{K+1}}\sqrt{K}\delta_{K+1}}$

- In noiseless case, it ensures exact support recovery in K iteration.
- *Near-Orthogonality* condition: Let $\mathbf{u} \perp \mathbf{v}$ s.t. $|T_u \cup T_v| \leq K$, and Φ satisfies RIP of order *K* with RIC δ_K . Then

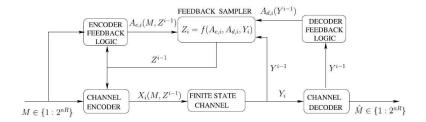
 $|\cos \measuredangle (\Phi_{\mathbf{u}}, \Phi_{\mathbf{u}})| \le \delta_{\mathcal{K}}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

To Feed or Not to Feedback

Authors: H. Asnani, H. H. Permuter, and T. Weissman

Setup



The codes satisfy the cost constraint

$$E\left[\Lambda\left(A_{e}^{N},A_{d}^{N}\right)\right]=E\left[\frac{1}{N}\sum_{i=1}^{N}\Lambda\left(A_{e,i},A_{d,i}\right)\right]\leq\Gamma$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Contributions

- Exactly characterize the capacity of finite state channels when P(s₀) > 0, ∀ s₀
- Capacity of indecomposable FSC without ISI
- Blahut-Arimoto algorithm is provided for the case when actions are cost-constrained.
 - To feed or not to feedback
- Characterization of capacity using a dynamic programming formulation

Other Papers

- "Compress-and-Forward Scheme for Relay Networks: Backword Decoding and Connection to Bisubmodular Flows", A. Raja and P. Viswanath
- "Index Coding An Interference Alignment Perspective", H.
 Maleki, V. R. Cadambe, and S. A. Jafar
- "Private Broadcasting over Independent Parallel Channels", A. Khisti and T. Liu
- "Fading Channels With Arbitrary Inputs: Asymptotics of the Constrained Capacity and Information and Estimation Measures", A. G. C. P. Ramos and M. R. D. Rodrigues