Journal Watch: IEEE Transactions on Communications, Vol. 61, No. 7, July 2013

Parthajit Mohapatra

Signal Processing for communication Lab.

Department of ECE, IISc

3rd August, 2013

Randomized Masking in Cognitive Radio Networks

Authors: K. Moshksar and A. K. Khandani

Affiliations: Department of Electrical and Computer Engineering, University of Waterloo, Canada

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- System model
 - One primary user (PU) and several secondary users
 - Primary is unaware of
 - Channel coefficients
 - Number of SU
 - Codebook of each SU
 - SU knows
 - Codebook of PU
 - Number of SUs
 - Its direct channel coefficient, the coefficient of channels connecting other secondary transmitters and the primary transmitter to its receiver
 - Secondary receivers: capable of multiuser decoding
 - Primary receiver: treats interference as noise

- Problem statement: Design schemes such that
 - PU: performance should not degrade beyond a certain level

- SU: satisfactory quality of service for itself
- Contributions
 - Randomized masking (RM)
 - Continuous transmission with power control (CTPC)
 - Randomized masking with power control (RMPC)
- RMPC can outperform both RM and CTPC

 Large-Scale MIMO Transmitters in Fixed Physical Spaces: The Effect of Transmit Correlation and Mutual Coupling

Authors: C. Masouros, M. Sellathurai, and T. Ratnarajah

Affiliations: University College London, Herriot Watt University, and University of Edinburgh

- Denser deployment of antennas
 - Spatial correlation
 - Mutual coupling
- · Problem considered: investigate the combined effect of
 - Increasing the number of antenna elements
 - Fixed transmitter space
- System model
 - Downlink MIMO system: BS with *N* transmit antennas and *M* (*N* ≥ *M*) single antenna receivers

- Semi-correlated channel at the transmitter $\mathbf{H} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}_M \otimes \sum_N)$
- Frequency flat fading

- Precoding schemes
 - Channel inversion (CI)
 - Correlation rotation (CR)
- CI precoding: sum rate
- CR precoding: lower bound of the receive SNR
- Result
 - Performance benefits can be achieved by fitting an increased number of antennas at the transmitter
 - Separation between antennas can be less than the transmit frequency wavelength

 Transmission Policies for Energy Harvesting Sensors with Time-Correlated Energy Supply

Authors: N. Michelusi, K. Stamatiou, and M. Zorzi

Affiliations: University of Southern California, CTTC, and University of Padova

- System model
 - Wireless sensor powered by an energy harvesting device

- · Reports data of varying importance to receiver
- Slotted-time system
- Battery: finite capacity
- EH process: two-state Markov chain
- Goal: Come up with low-complexity policies

- Contributions
 - Balanced Policy (BP): adapts transmission probability
 - Based only on the harvesting state
 - Energy harvesting and consumption need to be balanced

- Closed-form expression: average reward of the BP
- Asymptotic regime:
 - Energy arrivals are highly correlated
 - Battery capacity is very large

- Result: EHS performance is heavily dependent on the power-to-depletion (ρ)
 - Power that a fully charged battery can supply over a BAD period
 - Large ρ: battery capacity is sufficiently large to absorb the fluctuations in the EH process
 - Small ρ: adaptation of the transmission probability to the energy supply becomes more critical

 Average Rate of Downlink Heterogeneous Cellular Networks over Generalized Fading Channels: A Stochastic Geometry Approach

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Authors: M. D. Renzo, A. Guidotti, and G. E. Corazza

Affiliations: University of Bologna, Italy

- System model
 - Downlink heterogeneous cellular networks
 - PPP based abstraction model for the positions of the BSs
 - Heterogeneous cellular deployment: modeled as a *T*-tier networks
 - Each tier models BSs of a particular class
- BS association
 - MT is connected to the BS: offers the highest avg. received power

- Problem statement
 - Compute the avg. rate of a heterogeneous cellular network

•
$$\mathcal{R} = \sum_{t=1}^{T} A_t R_t$$

 A_t : Prob. that MT is associated to t^{th} tier
 R_t : Avg. rate of MT conditioned on its association to t^{th} tier

- Computationally very expensive to evaluate this term
- Contribution
 - New analytical methodology to evaluate the average rate

- · Key features of the frame work
 - General fading channel models with arbitrary fading parameters
 - Needs only the MGF of the aggregate interference at the probe mobile terminal
 - Can handle correlated Log-Normal shadowing with slight increase in the computational complexity

- Y. and S. Dey: Power Allocation for Secondary Outage Minimization in Spectrum Sharing Networks with Limited Feedback
- H. Najafi, M. Damen, and A. Hjorungnes: Asynchronous Compute-and-Forward
- C. Potter, K. Kosbar, and A. Panagos: On Achievable Rates for MIMO Systems with Imperfect Channel State Information in the Finite Length Regime
- Y. Zhong and W. Zhang: Multi-Channel Hybrid Access Femtocells: A Stochastic Geometric Analysis