Journal Watch: IEEE Transactions on Information Theory, Vol. 58, No. 2, Feb. 2012

Parthajit Mohapatra

Signal Processing for communication Lab.

Department of ECE, IISc

17 March, 2012

Communications

MIMO ARQ With Multibit Feedback: Outage Analysis

Authors: Khoa D. Nguyen, Lars K. Rasmussen, A. Guillen i Fabregas, and Nick Letzepis Affiliations: University of South Australia, Australia, KTH Royal Institute of

Technology and Universitat Pompeu Fabra, Barcelona, Spain.

- Studies the asymptotic outage performance of INR-ARQ¹ transmission over MIMO block-fading channels with discrete input constellations
- System Model
 - Each ARQ round is transmitted over *B* AWGN blocks of *J* channel uses
 - In the INR-ARQ scheme, the receiver attempts to decode at round / based on received signals collected in rounds 1,2,...,/

¹Incremental Redundancy Automatic Repeat Request () + ()

Contributions

- A fixed-rate transmission over the MIMO block-fading channel is considered. It is shown that the outage diversity is given by the Singleton bound
- The rate-diversity tradeoff of the MIMO ARQ system with multibit feedback under long-term power constraints is derived
- It is shown that a finite number of feedback bits is sufficient to achieve the maximal outage diversity
- A practically feasible feedback-and-power-adaptive rule is proposed

Communications

 On Degrees of Freedom Region of MIMO Networks Without Channel State Information at Transmitters

Authors: Chiachi Huang, Syed Ali Jafar, Shlomo Shamai, Sriram Vishwanath Affiliations: Yuan Ze University, Taiwan, University of California, Irvine, Technion-Israel Institute of Technology, Israel and University of Texas, Austin

- Objective: To explore the effect of the absence of channel state information for MIMO networks
- Assumptions:
 - Channel: Rayleigh fading that is i.i.d. across antennas, users and time slots

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Perfect CSIR and no CSIT
- MIMO Networks:
 - 2-user MIMO broadcast channel
 - 2-user MIMO interference channel

- Contributions
 - DOF region of a 2-user MIMO BC with *M* transmit antennas, *N*₁ and *N*₂ receive antennas is characterized
 - Achievable scheme: time division scheme between the two users
 - Outer bound derived for 2-user MIMO BC is extended to 2-user MIMO IC
 - Loss is more severe when transmitters carry more antennas than receivers whereas loss is less severe when receiver carry more antennas than transmitters
 - For a special case of 2-user MIMO BC the capacity region is established

Communication networks

Random Access: An Information-Theoretic Perspective

Authors: Paolo Minero, Massimo Franceschetti, and David N. C. Tse, Affiliations: University of Notre Dame, Notre Dame, USA, University of California, San Diego, USA and University of California, Berkeley, USA

- A random access system is analyzed from information theoretic perspective
- Initially, a two-sender random access system is considered
- Active users encode data into two streams
 - high priority
 - low priority
- two channel models: deterministic and AWGN channel

• Achievable scheme (AWGN channel): combines time-sharing and Gaussian superposition coding

- A k-sender random-access system is considered
- The communication problem is cast into an equivalent information theoretic network with multiple Tx and Rx
- Assumptions:
 - Users are active with same probability *p*, independently of each other

- Subject to same received power constraint
- Maximum achievable expected sum rate is characterized
- Depending on *p*, encoding rate is varied

Sparse signal recovery

Rank Awareness in Joint Sparse Recovery

Authors: Mike E. Davies and Yonina C. Eldar Affiliations: Institute for Digital Communication, Edinburgh University,U.K. and Technion-Israel Institute of Technology, Israel

- To recover a set of jointly sparse multichannel vectors from incomplete measurements
- MMV sparse recovery problem: Given $\mathbf{Y} \in \mathbb{R}^{m \times l}$ and $\phi \in \mathbb{R}^{m \times n}$ with m < n find

$$\hat{\mathbf{X}} = \arg \min_{\mathbf{X}} |\operatorname{Supp}(\mathbf{X})| \text{ s.t. } \phi \mathbf{X} = \mathbf{Y}$$

- A necessary and sufficient condition for the measurements to uniquely determine the jointly sparse matrix is obtained
- Rank of X is exploited in order to improve MMV recovery results

- S. Rini, D. Tuninetti, and N. Devroye: Inner and Outer Bounds for the Gaussian Cognitive Interference Channel and New Capacity Results
- H.-F. Lu: Remarks on Diversity-Multiplexing Tradeoffs for Multiple-Access and Point-to-Point MIMO Channels
- A. Host-Madsen, M. Uppal, and Z. Xiong: On Outage Capacity in the Low Power Regime
- M. P. Friedlander, H. Mansour, R. Saab, and O. Yilmaz: Recovering Compressively Sampled Signals Using Partial Support Information