Journal Watch: IEEE Transactions on Information Theory, Vol. 59, No. 3, Mar 2013

Parthajit Mohapatra

Signal Processing for communication Lab.

Department of ECE, IISc

23 February, 2013

Asynchronous Capacity per Unit Cost

Authors: V. Chandar, A. Tchamkerten, and D. Tse

Affiliations: MIT Lincoln Laboratory, Lexington, USA, Department of Comm. and Electronics, Telecom ParisTech, France and Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, USA

(日)

- Synchronization: important aspect of any communication system
- Problem: What is the fundamental limitation due to the lack of a priori synchrony between the transmitter and the receiver in bursty communication?
- Performance measure
 - Data rate: delay sensitive
 - Capacity per unit cost: constrained in energy
- The data burst arrives at a random symbol time (ν), not known a priori to the receiver

- $\nu \in [0, A]$: known at transmitter and receiver
- Decoder: sequential test (τ, φ): τ: stopping time and φ: declares the decoding message
- Main result: single-letter characterization of the asynchronous capacity per unit cost
- No cost for idle symbols:

 $(B + \log A)k_{sync}$

 k_{sync} : minimum cost to transmit one bit of information in the synchronous setting

 Degrees of Freedom Region of the MIMO Interference Channel With Output Feedback and Delayed CSIT

Authors: R. Tandon, S. Mohajer, H. V. Poor, and S. Shamai (Shitz)

Affiliations: Virginia Polytechnic Institute and State University, USA, University of California, Berkeley, USA, Princeton University, Princeton, USA and Technion-Israel Institute of Technology, Israel

(日)

- System model
 - 2-user MIMO interference channel (IC) with arbitrary numbers of antennas at each terminal
 - Local output feedback and delayed CSIT
- Goal: characterize the DoF region

- Main result: output feedback and delayed CSIT can strictly enlarge the DoF region as compared to delayed CSIT only
- DoF region with local feedback and delayed CSIT = DoF region with global feedback and delayed CSIT
- Converse: channels to the two receivers need not be statistically equivalent

 Distributed Optimization in an Energy-Constrained Network: Analog Versus Digital Communication Schemes

Authors: A. Razavi, W. Zhang, and Z. Luo

Affiliations: Department of Electrical and Computer Engineering, University of Minnesota, USA and Beijing University of Posts and Telecommunications, China

(日)

- Network of *n* nodes collaborate to minimize a cost function: $f(\mathbf{x})$, where $\mathbf{x} = [x_1, x_2, \dots, x_n]$
- x_l: a local variable controlled by the node S_l
- Capability of nodes:
 - Can perform local computation
 - Can exchange analog or digital messages with a set of predefined neighbors through orthogonal noisy channels

 Convergence has remained an important issue in such problems

- Objective: impact of communication energy on convergence
- Main results
 - Communication energy required to obtain an *ϵ*-minimizer of *f*(**x**) must grow at least at the rate of Ω(1/*ϵ*)
 - Bound is tight when f is convex quadratic
 - Same energy requirement can be reduced to O(log² 1/ε) if a suitable digital communication scheme is used

 Performance Guarantees of the Thresholding Algorithm for the Cosparse Analysis Model

Authors: T. Peleg and M. Elad

Affiliations: Department of Electrical Engineering and Department of Computer Science, Technion-Israel Institute of Technology, Israel

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Cosparse analysis model: signal can be multiplied by an analysis dictionary → sparse outcome
- Ω ∈ R^{p×d}: analysis dictionary and rows of Ω constitutes analysis atoms
- Cosparsity: number of zeros in the vector Ωx
- Problem: Need to recover x from y

 $\mathbf{y} = \mathbf{x} + \mathbf{e}$, where, \mathbf{x} is a cosparse analysis signal

- Performance guarantee of the thresholding algorithm for pursuit problem in the presence of noise
- Pursuit problem

$$\{\hat{\mathbf{x}}, \hat{\Lambda}\} = \arg \min_{\mathbf{x}, \Lambda} ||\mathbf{x} - \mathbf{y}||_2$$

 $\Omega_{\Lambda} \mathbf{x} = 0 \text{ and } \operatorname{Rank}(\Omega_{\Lambda}) = d - r$

- Algorithm computes Ωy and chooses the smallest entries as the estimated cosupport
- Two significant properties of Ω
 - Degree of linear dependencies between sets of rows in Ω: cosparsity level
 - Restricted orthogonal projection property: level of independence between such dependent sets and other rows in Ω