Journal Watch: IEEE Transactions on Information Theory, Vol. 58, No. 10, Oct 2012

Parthajit Mohapatra

Signal Processing for communication Lab.

Department of ECE, IISc

20 October, 2012

Optimal Phase Transitions in Compressed Sensing

Authors: Y. Wu and S. Verdu Affiliations: Department of Statistics, The Wharton School, University of Pennsylvania, USA and Department of Electrical Engineering, Princeton University, USA

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

- Goal: To investigate the fundamental tradeoff between reconstruction fidelity and measurement rate $(\frac{k}{n})$
- Phase transitions (for noiseless measurement): For many input processes (i.i.d. ones), there exits a threshold *d*(*X*) such that:
 - When *R* > *d*(*X*), it is possible to achieve vanishing error probability
 - When $R \leq d(X)$, error probability approach 1
- Phase transitions (for noisy measurement): Noise sensitivity is considered to analyze reconstruction fidelity

System model

$$\mathbf{P}_{\mathbf{X}} = (\mathbf{1} - \gamma)\mathbf{P}_{\mathbf{d}} + \gamma \mathbf{P}_{\mathbf{c}}$$

where P_d and P_c : discrete and cont. prob. measure

- For i.i.d. discrete-continuous mixtures: minimal measurement rate is given by the input information dimension, i.e., the weight of the absolutely continuous part (γ)
- Measurements corrupted by additive Gaussian noise:
 - optimal nonlinear encoder
 - optimal linear encoder
 - random linear encoder
- When input is i.i.d.: for any input distribution, the phase transition threshold for optimal encoding is given by the input information dimension $d(X) = \lim_{m \to \infty} \frac{H(\lfloor m \mathbf{X} \rfloor)}{\log m}$
- Look the paper for following three dimensions
 - Information dimension
 - MMSE dimension
 - Minkowski dimension

Sum rate of the Vacationing CEO problem

Authors: Rajiv Soundararajan, Aaron B. Wagner, and Sriram Vishwanath Affiliations: Department of Electrical and Computer Engineering, The University of Texas at Austin, USA and School of Electrical and Computer Engineering, Cornell University, USA

(日)

- Vacationing CEO problem: multiple encoders compress noisy versions of a single source in a distributed manner
- Combination of
 - 1. CEO problem
 - 2. multiple description (MD) problem

- Achievable scheme: Berger-Tung scheme for multiterminal source coding and the El Gamal-Cover scheme for MDs
- Gaussian scheme is optimal in the low distortion regime
- Time-sharing scheme with Gaussian codebooks is optimal in the high distortion regime

Achieving AWGN Capacity Under Stochastic Energy Harvesting

Authors: O. Ozel and S. Ulukus

Affiliations: Department of Electrical and Computer Engineering, University of Maryland, USA

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

- To analyze point-to-point communication of energy harvesting nodes from an information-theoretic perspective
- For continuous alphabet channel:
 - 1. average power constraint
 - 2. amplitude constraint
- Energy arrives at transmitter as discrete time stochastic process
- Cumulative power constraint: $\sum_{i=1}^{k} X_i^2 \le \sum_{i=1}^{k} E_i, i = 1, ... n$

・ロット (雪) (日) (日) (日)

• Main result:

The capacity of an AWGN channel with cumulative power constraint = classical AWGN capacity with average power constraint

- Achievable scheme
 - 1. Save and transmit
 - 2. Best effort transmit scheme
- Also, considers a system in which the average recharge rate is time varying in a larger time scale
- Optimization problem: Majorization and Schur convexity

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

On the Optimality of Binning for Distributed Hypothesis Testing

Authors: M. Rahman and A. B. Wagner Affiliations: School of Electrical and Computer Engineering, Cornell University, USA

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

• Vector source (X_1, \dots, X_L, Y) has joint distribution

$$H_0: P_{\mathbf{X}_1,...,\mathbf{X}_L,\mathbf{Y}}$$
$$H_1: P_{\mathbf{X}_1,...,\mathbf{X}_L,\mathbf{Y}}$$

Objective

- Characterize all achievable encoding rates
- Exponents of Type 2 error when Type 1 error is at most a fixed value

- Consider a class of *L*-encoder hypothesis testing problem against conditional independence
- Achievable scheme: Quantize-bin test
 - Encoder *I* first quantizes Xⁿ_l by selecting a codeword Uⁿ_l that is jointly typical with it

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- Encoder then sends index of the bin
- Provides outer bound for more general class of problem