Journal watch Journal Watch - IEEE Transactions on Signal Processing, Dec 01, 2014 issue

Abhay Sharma

January 3, 2015

Abhay Sharma ()

JW-Tran-Sig Proc

January 3, 2015 1 / 8

Active Classification for POMDPs: A Kalman-Like State Estimator

Authors: Daphney-Stavroula Zois, Marco Levorato and Urbashi Mitra

Univ. Southern California

Abnay Sharma ()

JW-Tran-Sig Proc

- Problem of tracking an unknown process in an uncertain environment by adaptively exploiting available heterogeneous resources
 - System state modeled by a finite-state DMC
 - System state is hidden; observed via a measurement vector
 - Conditionally Gaussian model where mean and cov. depend on the underlying state and the chosen control mode
 - Considered the joint problem of
 - * Determine MMSE system state estimator (past obs. and controls)
 - Optimal control strategy
- Contributions
 - Derive a "Kalman type" sub-optimal filter for state estimation
 - * Based on innovations representation of system model
 - ★ Approximation to force recursivity
 - Derive a dynamic programming algorithm for control policy

(日)

Semi-Blind Interference Alignment Techniques for Small Cell Networks

Authors: Furkan Can Kavasoglu, Yichao Huang and Bhaskar D. Rao

UCSD

Abilay Sharma ()

JW-Tran-Sig Proc

- Practical alg. for Interference Alignment (IA) in a clustered, small cell n/w
- Starting point: Blind IA algorithm (Wang, Guo and Jafar)
 - Reconfigurable Ant.: Dynamically change characteristics by changing geometry
 - Selfish Ant. Switching Vs Blind Ant. switching: Useful for Blind IA
 - No CSIT, No Tx Coop. required for IA;
 - No CSIR reqd. for ant. switching
- Contributions
 - BIA extended to handle inter-cell interference
 - * BIA is much more suited to small cell, clustered BS environments
 - BIA extended to Semi-BIA by using user location information (Path loss etc.)
 - Extending BIA to users from higher interference BSs

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Two-Part Reconstruction With Noisy-Sudocodes

Authors: Yanting Ma, Dror Baron and Deanna Needell

NCSU (Raleigh) and CMC (Claremont)

A D F A B F A B F A B

- CS-reconstruction framework
- Trade-off between runtime and reconstruction quality
- Two part reconstruction framework
 - Part 1: Fast Alg. to recover part of coefficients (Zero Coefficients)
 - ★ Sparse boolean matrices used for Part 1
 - Group testing based recovery algorithms used to identify zeros
 - Part 2: Process/Recover remaining coefficients
 - * Can use Least squares Or regular CS recovery alg (e.g., AMP)
- Contributions
 - Extended the algorithm for noisy observations in Part 1
 - * Thresholding based zero-identification criteria
 - Analysis to compute MSE for the whole algorithm

A (10) A (10)

Distributed Stochastic Online Learning Policies for Opportunistic

Spectrum Access Authors: Yi Gai and Bhaskar Krishnamachari Intel, USC@LA

Time-Frequency Analysis as Probabilistic Inference

Authors: Richard E. Turner and Maneesh Sahani Univ. of Cambridge and University College London

Adaptive Non Orthogonal MFSK Authors: Aniruddha Das and Bhaskar D. Rao ViaSat and UCSD

A Primal Dual Active Set Algorithm With Continuation for Compressed

Sensing Authors: Qibin Fan, Yuling Jiao, and Xiliang Lu Wuhan Univ. China

Abhay Sharma ()

JW-Tran-Sig Proc

イロト 不得 トイヨト イヨト