Journal watch Journal Watch - IEEE Transactions on Signal Processing, April 1 2014 issue

Abhay Sharma

March 22, 2014

Abhay Sharma ()

JW-Tran-Sig Proc

March 22, 2014 1 / 11

Performance Analysis and Optimization for Interference Alignment Over MIMO Interference Channels With Limited Feedback

Authors: Xiaoming Chen and Chau Yuen

Nanjing University of Aeronautics and Astronautics, Jiangsu

Singapore University of Technology and Design

The second se

- Performance analysis framework for IA
 - Limited CSI feedback
 - MIMO interference channels
 - Maximize average transmission rate (variables: f/b amount, transmission modes)
 - ★ Closed form expressions for SINR (and average trans. rate) in the presence of IA leakage
 - ★ Tools: Random vector quantization
 - Greedy allocation of feedback bits
 - Dynamic mode selection scheme
- Asymptotic analysis on average transmission rate
 - Trade-off between feedback amount and rate loss
 - Increase in antennas is useful only if the feedback budget is also increased
 - Interference limited scenarios: Single data stream is optimal

< 同 ト < 三 ト < 三 ト

Greedy Algorithms for Joint Sparse Recovery

Authors:

Jeffrey D. Blanchard, Michael Cermak, David Hanle, and Yirong Jing

Grinnell College, IA, USA

Abhav	v Sharma	()
	,	•••

JW-Tran-Sig Proc

- Extension and investigation of "well-known" greedy algorithms to MMV setup
 - ▶ IHT, NIHT, HTP, NHTP, CoSamp
- Sufficient conditions based on the Asymmetric-RIP to guarantee joint sparse recovery
 - Results in terms of lower and upper RIC
 - Smallest and largest singular values deviate in asymmetric fashion
 - Much weaker sufficient conditions
 - Sufficient conditions agree with the SMV counterparts
- Bounds on recovery error
- Simulation results
 - Good performance
 - Theoretical results are quite pessimistic, empirical average case provides much more information

Decomposition Approach for Low-Rank Matrix Completion and Its Applications

Authors:

Rick Ma, Nafise Barzigar, Aminmohammad Roozgard, and Samuel Cheng

Hong Kong University of Science and Technology Univ. of Oklahama

- Low rank matrix completion algorithm
 - Significantly reduces complexity and storage requirements
 - Does not use SVD or norm-minimization
 - Can be applied with finite field incomplete matrices also
 - Extensive numerical simulations to test the algorithm
- Overview of main algorithmic components
 - Decompose a incomplete matrix into u-diagonalizable matrices.
 - * Cluster all known entries into block diagonal structure
 - ★ Conditions for *u*-diagonalizability ?
 - Complete, each cluster using a "trimming" procedure
 - Involves finding out if a particular column belongs to the column space of some matrix
 - Find "basis" columns of cluster sub-matrix
 - Zero out the incomplete entries in basis columns
 - Complete the remaining columns using the linear combinations of basis columns
 - Complete all off-diagonal entries using completed clusters

・ロト ・ 四ト ・ ヨト ・ ヨト

On the Linear Convergence of the ADMM in Decentralized Consensus Optimization

Authors: Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin

University of Science and Technology of China, Hefei UCLA

	01	~ ~
Ahha	/ Sha	irma ()
Abilia		

JW-Tran-Sig Proc

- Decentralized consensus optimization problem is considered
 - min_x $\sum_{i=1}^{L} f_i(x)$, *L* n/w agents, common optimization variable *x*.
 - To solve the above in a decentralized fashion
- ADMM is applied to the decentralized setup
- Main contributions
 - A linear convergence rate has been established for ADMM in decentralized setup
 - Dependence of the rate on n/w topology, properties of objective functions is established
 - Algorithm parameter choices to get higher convergence rates is discussed

・ 同 ト ・ ヨ ト ・ ヨ ト

Smoothing and Decomposition for Analysis Sparse Recovery

Authors: Zhao Tan, Yonina C. Eldar, Amir Beck and Arye Nehorai

Washington Univ., St Louis, USA Technion Israel

Abhay Sharma ()

JW-Tran-Sig Proc

March 22, 2014 10 / 11

4 3 5 4 3

Algorithms and recovery guarantees for "Analysis" sparse model

$$\min_{\mathbf{x}\in\mathbb{R}^n} \|\mathbf{D}^H \mathbf{x}\|_1 \text{ subject to } \|\mathbf{A}\mathbf{x} - \mathbf{b}\| < \epsilon$$

- Main contributions
 - Extensions of FISTA to the above setting is considered
 - Fast iterative shrinkage-thresholding algorithm (First order method)
 - Unlike, ADMM and NESTA does not require A to have particular structure
 - General recovery guarantees for these algorithms based on D-RIP

イロト イヨト イヨト イヨト