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Low-order parametric model estimation from noisy models
Dictionary based model estimation

◮ Parameter space is discretized into K parameter samples
◮ Evaluate a parametric function at a parameter sample for all

measurements
◮ Static dictionary

⋆ Estimates quantized to the sample spacing
⋆ Finer spacing leads to large dictionaries and higher inter-column

correlations
⋆ Dynamic dictionary sizes try to avoid the above issues

Training free dynamic dictionary algorithms
◮ Penalty based algorithm: repulsion penalty function that controls

the parameter spacing
⋆ LASSO type objective function along with an extra penalty term,

µg(θk − θj), where g() can be 1/‖z‖2 for example
◮ Constraint based algorithm: Directly constrain the parameter

distance

Analysis shows that dynamic algorithms overcomes parameter
estimation bias induced by quantization
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Using Full-Duplex MIMO concepts in implementing PHY layer
secrecy
Practical approaches to PHY layer secrecy - degrade the
decoding capability of ED

◮ Multiple Antenna at Transmitter - Artificial noise (AN)
◮ External help to jam the ED - Cooperative Jamming (CJ)
◮ No external sources - Multiple transmissions from source (iJAM)

Full-Duplex transmissions to jam the ED
◮ Considered practical models of self-interference (LI model)
◮ One Tx ant, one Rx ant and single ant ED

⋆ Closed form expressions for power allocation for the receiver
⋆ Full power not utilized (Saturation due to LI)

◮ Destination with multiple antennas
⋆ System is no longer interference limited
⋆ Shown that optimal jamming covariance matrix is rank-1 and

proposed algorithms to find it
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Distributed optimization via diffusion
◮ Combination of descent step with network diffusion steps
◮ Distributed Gauss-Newton Algorithm for NLLS optimization

Setup
◮ Let g(x) : RN → R

M

◮ Objective function is gT (x)g(x)
◮ Multiple agents in the system. Each agent has access to partial

information about g(x)
◮ Compute x that minimized above objective function in a distributed

fashion

Each agent solves the problem “locally”
Information required for computing descent direction is exchanged
using gossiping

◮ Time varying network graph considered
◮ Each agent combines information from neighbors in weighted

fashion and the weight matrix depends upon the topology during
the exchange epoch

◮ Static exchange model and Randomized exchange model
considered

The proposed GGN algorithm is applied for PSSE applications
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Sparse reconstruction with multiple measurements (MMV) using
Bayesian framework
Apart from additive noise, a structured noise component is
considered

◮ Interference from other users (Clutter in radar, reverberation in
active sonar etc.)

◮ Modeled as
∑K

k=1 Zk uk , where Zk are (known) regression matrices
and uk ∼ N (0,Σu)

◮ Σu is unknown and treated as nuisance parameters and estimated
from data

Standard SBL framework
◮ Component variances (hyper-parameters) are used to control which

dictionary items are active
◮ EM-algorithm is used to numerically compute these

hyper-parameters
◮ “Pruning” to reduce the parameter space progressively

A new statistical decision based pruning procedure is proposed
◮ Test has CFAR like properties
◮ Does not depend upon power of the signal, interference nor the

noise
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