Journal Watch IEEE Transactions on Signal Processing 15 December 2016

Geethu Joseph SPC Lab, IISc

Sum Rate Maximization for Non-Regenerative MIMO Relay Networks

Cong Sun, Eduard Axel Jorswieck and Ya-xiang Yuan

Received signal =Desired signal + $\sum_{T \times}$ Interference + \sum_{Relays} Noise

Sum Rate Maximization for Non-Regenerative MIMO Relay Networks

Received signal =Desired signal + \sum_{Tx} Interference + \sum_{Relays} Noise

- Idea: Sum-rate $\leq 0.5 \log(1 + \text{TSTINR})$
 - \implies maximize total signal to total interference + noise ratio
- Solution: alternating direction algorithm
- Algorithm modification to transmit multiple data stream

Optimization tools

Nonconvex quadratic constrained quadratic programming:

- Feasible shrinkage method to obtain a good initialization
- Apply the nonconvex sequential quadratic programming method to achieve the KKT point

DOLPHInDictionary Learning for Phase Retrieval

Andreas M. Tillmann, Yonina C. Eldar and Julien Mairal

- Observations: $\mathbf{Y} = |\mathcal{F}(\mathbf{X})| + \mathbf{N}$
 - $\mathcal{F}(\cdot): [0,1]^{N_1 imes N_2}
 ightarrow \mathbb{C}^{M_1 imes M_2}$ linear operator
- Goal: Learn a dictionary $m{D} \in \mathbb{R}^{s imes n}$ such that $m{x}^i = m{D}m{a}^i$
 - x^i a vector of patch of **X** of size *s*.
 - *a* is sparse
- **Optimization:** min {observation fit error X.D.A

 $+ \text{ model fit error } + \text{ sparsity of } \boldsymbol{A} \}$ subject to $\boldsymbol{X} \in [0, 1]^{N_1 \times N_2}$ and $\|\boldsymbol{d}_j\| \leq 1$

- Solution: alternating minimization
- Tools used:
 - 1. Projected gradient descent
 - 2. Block-coordinate descent
- 3. Iterative shrinkage-thresholding algorithm (ISTA)

Optimized Sensor Collaboration for Estimation of Temporally Correlated Parameters Sijia Liu, Swarnendu Kar, Makan Fardad and Pramod K. Varshney

Optimized Sensor Collaboration for Estimation of Temporally Correlated Parameters Sijia Liu, Swarnendu Kar, Makan Fardad and Pramod K. Varshney

Optimized Sensor Collaboration for Estimation of Temporally Correlated Parameters

• Optimization problem:

 $\begin{array}{l} \underset{w_m}{\min} \ \text{MSE in estimation} \\ \text{s.t.} \ \mathbb{E} \|z_m\|^2 \leq E_m, \forall m \end{array}$

- Formulation: semidefinite program with a rank-one constraint
- Solution: penalty convex-concave procedure
- Implementation: alternating direction method of multiplier

A Structured Sparse Plus Structured Low-Rank Framework for Subspace Clustering and Completion _{Chun-Guang Li and René Vidal}

- Columns of X are drawn from union of k low-dim. subspaces
- Observations: a subset of the entries of an unknown matrix X
- **Goal:** find the missing entries of *X*

Alternate between the two step:

- **Sparse Subspace Clustering:** Perform subspace clustering on the completed data
- Low-rank matrix completion: Find a low rank matrix for each subspace independently
- **Optimization tools:** Linearized alternating direction method of multipliers combined with spectral clustering

Other Papers

- Joint Beam Selection and Power Allocation for Multiple Target Tracking in Netted Colocated MIMO Radar System
 - J. Yan, H. Liu, W. Pu, S. Zhou, Z. Liu, and Z. Bao
- The Complex Parameter Rao Test
 - S. Kay and Z. Zhu
- Sequential Likelihood Ratio Test for Cognitive Radios
 - J. Renard, L. Lampe, and F. Horlin
- Power Management for Cooperative Localization: A Game Theoretical Approach
 - Junting Chen, Yuan Shen, Vincent K. N. Lau and Moe Z. Win