Journal Watch IEEE Transactions on Signal Processing Vol. 62, No. 15, Aug. 1, 2014

Geethu Joseph

SPC Lab, IISc

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Maximum Likelihood Estimation From Sign Measurements With Sensing Matrix Perturbation

Authors: Jiang Zhu, Xiaohan Wang, Xiaokang Lin, and Yuantao Gu

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Problem

Problem: Estimate w from binary measurement vector

$$\boldsymbol{y} = \text{sign}\left\{ \left(\boldsymbol{H} + \boldsymbol{E}
ight)^T \boldsymbol{w} + \boldsymbol{n}
ight\},$$

 $\boldsymbol{n} \sim \mathcal{N}(\boldsymbol{0}, \sigma_n^2 \boldsymbol{I}), \boldsymbol{e}_{ij} \sim \mathcal{N}(\boldsymbol{0}, \sigma_e^2), \text{ iid and } \boldsymbol{n} \bot \boldsymbol{E}.$

 Application: Estimation of physical quantities based on binary quantized measurements in wireless sensor networks

• ML estimation:
$$\mathbf{y} = \operatorname{sign}\left\{\mathbf{H}^{\mathsf{T}}\mathbf{w} + \mathbf{z}\right\}$$

$$\implies \boldsymbol{w}_{\text{ML}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} - \sum_{i=1}^{N} \log \Phi \left\{ \boldsymbol{y}_{i} \frac{\boldsymbol{h}_{i} \boldsymbol{w}}{\sqrt{\|\boldsymbol{w}\|_{2}^{2} \sigma_{e}^{2} + \sigma_{n}^{2}}} \right\},$$

(日) (日) (日) (日) (日) (日) (日)

Results

- ML estimate is consistent
- The Cramér-Rao Lower Bound on the mean square error is derived
- ML estimation problem is reformulated as a convex optimization problem

$$\mathbf{w}_{\text{ML}} = \underset{\mathbf{w}}{\operatorname{argmin}} - \sum_{i=1}^{N} \log \Phi \left\{ \mathbf{y}_{i} \frac{\mathbf{h}_{i} \mathbf{w}}{\sqrt{\|\mathbf{w}\|_{2}^{2} \sigma_{e}^{2} + \sigma_{n}^{2}}} \right\} \text{to}$$
$$\mathbf{v}^{*} = \underset{\mathbf{v}}{\operatorname{argmin}} - \sum_{i=1}^{N} \log \Phi \left\{ \mathbf{y}_{i} \mathbf{h}_{i} \mathbf{v} \right\},$$

subject to
$$\|\boldsymbol{v}\|_2^2 \leq \frac{1}{\sigma_e^2}$$
, and $\boldsymbol{w}_{\text{ML}} = \frac{\sigma_n}{\sqrt{1 - \|\boldsymbol{v}\|_2^2 \sigma_e^2}} \boldsymbol{v}^*$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Variants of Non-Negative Least-Mean-Square Algorithm and Convergence Analysis

Authors: Jie Chen, Cédric Richard, Jose-Carlos M. Bermudez, and Paul Honeine

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

NNLMS Algorithm

The unknown system is characterized by real-valued observations:

$$y(n) = {\alpha^*}^{\mathsf{T}} \mathbf{x}(n) + z(n),$$

 $\mathbf{x}(n) = \begin{bmatrix} x(n) & x(n-1) & \dots & x(n-N+1) \end{bmatrix}^{\mathsf{T}}$, x(n), z(n) are stationary and zero mean

 The optimum non-negative model with mean-square error criterion,

$$\boldsymbol{\alpha}^{0} = \underset{\boldsymbol{\alpha}}{\operatorname{argmin}} \mathbb{E}\left\{ \left[\boldsymbol{y}(\boldsymbol{n}) - \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{x}(\boldsymbol{n}) \right]^{2} \right\} \right\} \text{ subject to } \boldsymbol{\alpha}_{i}^{0} \geq 0 \forall i$$

NNLMS Algorithm: fixed-point iteration scheme

$$\boldsymbol{\alpha}(n+1) = \boldsymbol{\alpha}(n) + \eta \boldsymbol{e}(n) \boldsymbol{D}_{\boldsymbol{X}}(n) \boldsymbol{\alpha}(n),$$
$$\boldsymbol{e}(n) = \boldsymbol{y}(n) - \boldsymbol{\alpha}^{\mathsf{T}}(n) \boldsymbol{x}(n), \boldsymbol{D}_{\boldsymbol{X}}(n) = \operatorname{diag} \{ \boldsymbol{x}(n) \}$$

Variants of NNLMS

Normalized NNLMS: Sensitivity of input power

$$\alpha_{\mathsf{N}}(n+1) = \alpha_{\mathsf{N}}(n) + \frac{\eta}{\|\boldsymbol{x}(n)\|_{2}^{2} + \epsilon} \boldsymbol{e}(n) \boldsymbol{D}_{x}(n) \alpha_{\mathsf{N}}(n)$$

 Exponential NNLMS: Unbalance of convergence rates for different weights

$$\boldsymbol{\alpha}_{\mathsf{E}}(n+1) = \boldsymbol{\alpha}_{\mathsf{E}}(n) + \eta \boldsymbol{e}(n) \boldsymbol{D}_{\mathsf{x}}(n) \boldsymbol{\alpha}_{\mathsf{E}}^{(\gamma)}(n), 0 < \gamma < 1$$

$$oldsymbol{lpha}_{\mathsf{E}_i}^{(\gamma)} = \mathsf{sgn}\{oldsymbol{lpha}_{\mathsf{E}_i}\}|oldsymbol{lpha}_{\mathsf{E}_i}^{(\gamma)}|.$$

Sign-Sign NNLMS: Computational complexity

$$\alpha_{N}(n+1) = \alpha_{N}(n) + \eta \text{sgn} \{e(n)\boldsymbol{D}_{x}(n)\} \alpha_{N}(n), \eta = 2^{-m}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Adaptive Penalty-Based Distributed Stochastic Convex Optimization

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Authors: Zaid J. Towfic and Ali H. Sayed

Problem

A network of *N* agents, where each node possesses a strongly convex cost function, *J_k(w)*, and a set of affine equality and convex inequality constraints *w* ∈ W_k, *w* ∈ ℝ^M

$$\underset{w}{\operatorname{argmin}} J^{\operatorname{glob}} = \sum_{k=1}^{N} J_{k}(w) \text{ s.t. } w \in \mathbb{W} = \bigcap_{k=1}^{N} \mathbb{W}_{k}$$

 Unconstrained optimization problem that approximates above problem

$$\underset{w}{\operatorname{argmin}} J_{\eta}^{\text{glob}} = \sum_{k=1}^{N} J'_{k\eta}(w), \ J'_{k\eta}(w) = J_{k}(w) + \eta p_{k}(w)$$

 $p_k(w)$ is selected so that $\nabla p_k(w) = 0$, when $w \in \mathbb{W}_k$

The distributed solution relies on local processing with each agent having knowledge of only its own constraint set and cost function

Algorithm

 Gradient descent algorithm at each node and convex combination of estimates of nodes in neighborhood

$$\psi_{k,i} = \mathbf{w}_{k,i-1} - \mu \nabla_{\mathbf{w}} \mathbf{J}'_{k\eta}(\mathbf{w}_{k,i-1})$$

= $\mathbf{w}_{k,i-1} - \mu \nabla_{\mathbf{w}} \{ \mathbf{J}_k(\mathbf{w}_{k,i-1}) + \eta \mathbf{p}_k(\mathbf{w}_{k,i-1}) \}$
 $\mathbf{w}_{k,i} = \sum_{l \in \mathcal{N}_k} \mathbf{a}_{l,k} \psi_{l,i}$

Adapt-then-Combine: Combine-then-Adapt:

$$\begin{aligned} \zeta_{k,i} &= \mathbf{w}_{k,i-1} - \mu \nabla_{\mathbf{w}} \mathbf{J}_{k}(\mathbf{w}_{k,i-1}) & \psi_{k,i-1} &= \sum_{l \in N_{k}} \mathbf{a}_{l,k} \mathbf{w}_{l,i} \\ \psi_{k,i} &= \zeta_{k,i} - \mu \eta \nabla_{\mathbf{w}} \mathbf{p}_{k}(\zeta_{k,i}) & \zeta_{k,i} &= \psi_{k,i-1} - \mu \nabla_{\mathbf{w}} \mathbf{J}_{k}(\psi_{k,i-1}) \\ \mathbf{w}_{k,i} &= \zeta_{k,i} - \mu \eta \nabla_{\mathbf{w}} \mathbf{p}_{k}(\zeta_{k,i}) & \mathbf{w}_{k,i} &= \zeta_{k,i} - \mu \eta \nabla_{\mathbf{w}} \mathbf{p}_{k}(\zeta_{k,i}) \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Learning Parametric Dictionaries for Signals on Graphs

Authors: Dorina Thanou, David I Shuman, and Pascal Frossard

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Problem

- A weighted and undirected graph, $G = (V, \mathcal{E}, W)$
- Given a set of training graph signals,

$$Y = \begin{bmatrix} y_1 & y_2 & \dots & y_M \end{bmatrix} \in \mathbb{R}^{N \times \Lambda}$$

- Find structured graph dictionary that represent all of the signals in Y as linear combinations of only a few of its atoms
- ► Structure on dictionary: $\mathcal{D} = \begin{bmatrix} \mathcal{D}_1 & \mathcal{D}_2 & \dots & \mathcal{D}_s \end{bmatrix} \in \mathbb{R}^{N \times NS}$

(日) (日) (日) (日) (日) (日) (日)

- $\mathcal{D}_s = \sum_{k=0}^{K} \alpha_{sk} \mathcal{L}^k \in \mathbb{R}^{N \times N}$, \mathcal{L} is normalized graph Laplacian operator
- Two additional constraints

$$\begin{array}{l} \bullet \quad 0 \leq \mathcal{D}_s \leq c I \\ \bullet \quad (c - \epsilon_1) I \leq \sum_{s=1}^{S} \mathcal{D}_s \leq (c + \epsilon_2) I \end{array}$$

Set of parameters: $\alpha \in \mathbb{R}^{(K+1) \times S}$

Algorithm

Optimization problem

$$\underset{\alpha,X}{\operatorname{argmin}} \|Y - \mathcal{D}X\|_{\mathsf{F}}^{2} - \mu \|\alpha\|_{2}^{2},$$

s.t. sparsity and stucture conditions

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Iterative Algorithm:

- 1. Fix parameters α and solve for X using OMP, under sparsity constraint, $||x_m|| \le T_0 \forall m$
- 2. Using *X* solve for *α* using a constrained quadratic optimization

Other Papers

- Achievable Rates of Full-Duplex MIMO Radios in Fast Fading Channels With Imperfect Channel Estimation
 - A. C. Cirik, Y. Rong, and Y. Hua
- Sub-Nyquist Sampling for Power Spectrum Sensing in Cognitive Radios: A Unified Approach
 - H. Shu, L. Ros, and E. P. Simon
- State Estimation Over a Lossy Network in Spatially Distributed Cyber-Physical Systems
 - S. Deshmukh, B. Natarajan, and A. Pahwa
- One-Shot Blind CFO and Channel Estimation for OFDM With Multi-Antenna Receiver

W. Zhang, Q. Yin, W. Wang, and F. Gao