Journal Watch IEEE Transactions on Signal Processing 15 August 2016

Geethu Joseph

SPC Lab, IISc

Geethu Joseph Journal Watch IEEE Transactions on Signal Processing

Exact Recovery of Sparse Signals Using Orthogonal Matching Pursuit: How Many Iterations Do We Need? Jian Wang and Byonghyo Shim

- System model: $y = \phi x$; x is K-sparse
 - T: support of \mathbf{x} , |T| = K
 - cK: number of OMP iterations for exact recovery, c > 1

Main Result

If $\boldsymbol{\phi}$ obeys RIP of order $\lfloor (c+1)K \rfloor$, for exact recovery

$$c \geq -rac{4(1+\delta)}{1-\delta}\log\left(rac{1}{2}-\sqrt{rac{\delta}{2+2\delta}}
ight)$$

- $\bullet~\text{LB}$ monotonically increases with the RIC δ
- Example: For Gaussian matrices $c \approx 2.8$ if $m \sim \mathcal{O}\left(K \log \frac{N}{K}\right)$

Optimal Transmit Strategy for MISO Channels With Joint Sum and Per-Antenna Power Constraints Phuong Le Cao, Tobias J. Oechtering, Rafael F. Schaefer and Mikael Skoglund

- Signal Model: Point-to-point MISO channel: $y = \mathbf{x}^T \mathbf{h} + z$
- If \boldsymbol{x} is normal such that $\boldsymbol{Q} = \mathbb{E}(\boldsymbol{x}\boldsymbol{x}^{T})$, the achievable rate is

$$R = \log\left(1 + rac{1}{\sigma^2} h Q h
ight)$$

• Constraints: $m{Q} \succcurlyeq 0$, $\mathsf{Tr}(m{Q}) \leq P_{tot}$, and $m{Q}_{ii} \leq \hat{P}_i$

Contributions

- **1** Gaussian distributed input is capacity-achieving with the constraints
- 2 A simple recursive algorithm to compute the optimal $oldsymbol{Q}$
 - **1** Find optimal power allocation with sum power constraint only
 - 9 For antennas who violate per-antenna power constraint, allocate \hat{P}_i
 - Oivide the remaining power among the other antennas with reduced constraints

Discrete Sum Rate Maximization for MISO Interference Broadcast Channels: Convex Approximations and Efficient Algorithms Hoi-To Wai, QiangLi, and Wing-Kin Ma

- System Model:M transmitters serves K receivers in a unicast manner
- Assumption: Gaussian input $s_q(t)$ with $W_q = \mathbb{E}\{s_q(t)s_q(t)^T\}$
- **Goal:** Find $\{W_q\}_{q=1}^{KM}$ to maximize $\sum_q \lambda_q r_q$ such that $\forall q, i$
- Moment: $W_q \succcurlyeq$ 0, Rank $\{W_q\} \le 1$ Discrete rate: $r_q \in \mathcal{R}$
- Power: $\sum_{q \in \mathcal{K}_i} \operatorname{Tr}\{W_q\} \le P_i$ SINR: $\gamma(r_q) \le SINR_q(W)$

Proposed Solution

- Convex approximation formulation
- Low-complexity and decentralized optimization algorithms

・ロト ・回ト ・ヨト ・

ъ

Bayesian Learning of Degenerate Linear Gaussian State Space Models Using Markov Chain Monte Carlo Pete Bunch, James Murphy, and Simon Godsill

• Measurement model:

$$\begin{aligned} x_t &= F x_{t-1} + \epsilon_t^x; \qquad \qquad \epsilon_t^x \sim \mathcal{N}(0, Q) \\ y_t &= H x_t + \epsilon_t^y; \qquad \qquad \epsilon_t^y \sim \mathcal{N}(0, R) \end{aligned}$$

• Goal: Estimation of system parameter matrices F and Q

Central Idea: Gibbs sampler

Sample alternately the conditional posterior distributions

- **1** $\pi(x_{1:T}|F, Q)$: Gaussian obtained using Kalman Smoothing
- **2** $\pi(F, Q|x_{1:T})$: Matrix normal-inverse Wishart distribution

• Contribution: Extension to the case when Q is singular

- Enhanced PUMA for Direction-of-Arrival Estimation and Its Performance Analysis
 - Cheng Qian, Lei Huang, Nicholas D. Sidiropoulos and Hing Cheung So
- Bayesian Model for Multiple Change-Points Detection in Multivariate Time Series
 - Flore Harlé, Florent Chatelain, Cédric Gouy-Pailler and Sophie Achard
- Compressive Detection of Random Subspace Signals
 - Alireza Razavi, Mikko Valkama and Danijela Cabric
- Infection Spreading and Source Identification: A Hide and Seek Game
 - Wuqiong Luo, Wee Peng Tay and Mei Leng

・ 同 ト ・ ヨ ト ・ ヨ ト