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Collaborative Kalman Filtering for Dynamic Matrix 

Factorization

John Z. Sun, Dhruv Parthasarathy, and Kush R. Varshney



• Contributions:

▫ Validated proposed CKF and shown its advantages over SVD and time 

SVD 

▫ Derived an EM algorithm to learn the parameters of the model 

considering temporal dynamics into account



• System Model:

 

§ User factor matrix, U ϵ RN*K  

§  Item factor matrix, V ϵ R M*K   

§  Preference Matrix, O ϵ R N*M , computed as O = U VT

• Existing work : 

§  SVD:

§   Follows Stochastic gradient descent

§  Assumes both user and item factors are constant over time



§  Time SVD:

§ ui  (t) = ui + αi devi (t)

          Requires time factors to lie on same latent space

• Proposed scheme - CKF : uses Linear – Gaussian Dynamic State Space 

Model



• State Evolution Equation:

• State Observation Equation:
 
         

• The MAP estimates of the model, V, A i, t  , Q i, t , R i, t , μ i , Σ i are obtained 

using Kalman filtering
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Group Sparse Signal Denoising: Non-Convex 

Regularizaton, Convex Optimization

Po- Yu Chen and Ivan W. Selesnick



• Contribution:

§ Formulation of group sparse signal denoising as convex optimization 

problem with a non convex regularization term.

§ Derivation of computationally efficient iterative algorithm that 

monotonically reduces the cost function value



• System Model: Group Sparse vector is estimated from an observation y, 

where

• Existing work: 

• Solution to such a problem  is given by

 

       where, cost function F(x), the penalty term R(x) are in general convex.
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• Proposed Scheme: solves the same equation, except does  convex 

optimization with non-convex penalty term

§ Penalty term assumed is a parameterized 

          Eg :  

§ Derives an algorithm that minimizes F using  Majorization  -

Minimization(MM) procedure.
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v  MM:

              

• Q should satisfy 

F ofMajorizer  is ,: where,
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Distributed Information Theoretic Clustering

Pengcheng Shen and Chunguang Li



• Contributions:

§ Incorporated an information theoretic measure (MMI) into the cost 

function of distributed clustering to present linear and kernel distributed 

clustering algorithms 

§ Proposed a “global-like” local cost function for each node

§ Developed a two-step iterative scheme to protect the privacy and save 

communication resource



• System Model: 

§ Network consists of J nodes

§ Each node collects a  set of N j  , D- dimensional data items considered to 

be samples of a random variable X j  with probability measure p( Xj )

§  X j , j = 1 to J  are assumed to follow same probability measure.

§ B j  -  Neighbour  set

§ Node J clusters its  local data into M different  classes. 



• Existing work :

§ K-means and GMM

§ Centralized clustering using information theoretic measures such as 

divergence and MI

• Proposed Work :

§ Incorporates  MMI criterion  into cost function in distributed clustering , 

to present distributed  MMI- based (DMMI) clustering algorithms.



§ Linear DMMI : 

� Solves only Linearly separable problems

� Clustering  model is modeled by Multi- Class  Logistic Regression 

function 

§ Complexity: 

▫ Kernel DMMI : 

� Uses Kernel Multi-Logit Regression model

� Requires that whole data items need to be available at each node 

that conflicts proposed framework 
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• Modified Kernel DMMI: choose a specific set of L base vectors 

instead of using all the data items

• Complexity: 
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Joint Source-Channel Vector Quantization for 

Compressed Sensing

Amirpasha Shirazinia, Saikat Chatterjee and  Mikael Skoglund



• Contributions:

§ Optimal encoding and decoding conditions for VQ

§ Theoretical bound on MSE performance

§ A practical VQ encoder- decoder design through an iterative algorithm     ( 

COVQ – CS )

§ A low complexity multi stage encoder- decoder design COMSVQ-CS



• System Model:  

          

•
Existing Work: 

§ Considers only pure source coding to quantize CS measurements              
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• Proposed Scheme :

           

                Fig 1. System Model for JS-C VQ of CS Measurements

• Channel – DMC

• Assume that channel transition probabilities  are known in advance and 

transmitted index  and received index share the same index set І
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Fig 2. Equivalent block diagram with CS Reconstruction at encoder side

Complexity :  2N2R FLOPs

To minimize  propose MSVQ - CS

Practical encoder – decoder design is made called  COVQ – CS



Other papers…

• Adaptive Distributed Estimation Based on Recursive Least-

Squares and Partial Diffusion

      R. Arablouei, K. Dogancay, S. Werner and Y. F. Huang

• Distributed Estimation and Detection with Bounded 

Transmissions Over Gaussian Multiple Access Channels

       S. Dasarathan and C. Tepedelenlioglu

• Prediction of Partially Observed Dynamical Processes over 

Networks via Dictionary Learning

       P. A. Forero, K. Rajawat, and G. B. Giannakis 




