Journal Watch IEEE Transactions on Signal Processing, June 2018

Akshay Kumar

June 9, 2018

Rectified Gaussian Scale Mixtures and the Sparse Non-Negative Least Squares Problem

A. Nalci, Igor Fedorov, Maher Al-Shoukairi, Thomas T. Liu, and Bhaskar D. Rao

 Considers the problem of Sparse Non-Negative Least Squares (S-NNLS), i.e.,

 $\min_{\mathbf{x} \ge \mathbf{0}, \mathbf{y} = \phi \mathbf{x}} \| \mathbf{x} \|_0$

- They propose a Bayesian framework for sparse recovery
- Choose Rectified Gaussian hyperprior on **x**, i.e., $p(x_i|\gamma_i) = \mathcal{N}^R(x_i; \mu, \gamma_i) = \sqrt{\frac{2}{\pi\gamma_i}} \frac{e^{-\frac{(x-\mu)^2}{2\gamma_i}}u(x)}{erfc(\frac{-\mu}{2\gamma_i})}$
- Type-II estimation using expectation-maximization algorithm (Rectified-SBL)

- In M-step, compute $\mathbb{E}[x_i^2]$, no closed form expression
- Proposed numerical methods such as MCMC-EM and GAMP
- GAMP has computational complexity of $\mathcal{O}(MN)$

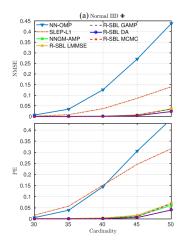


Figure 1 : $\boldsymbol{\Phi} \in \mathbb{R}^{100 \times 400}$

Recovery of Structured Signals With Prior Information via Maximizing Correlation

Xu Zhang , Wei Cui , and Yulong Liu

Objective: Recover structured signals in presence of prior information ϕ by solving,

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{sig} - \lambda \langle \mathbf{x}, \phi \rangle$$

s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \delta$

where, $\|\cdot\|_{sig}$ is an appropriate norm

- Structure considered Sparsity, Block Sparsity and Low rank
- Performance guarantees under sub-Gaussian measurements, precisely
 m = O(γ²(T_f ∩ S^{n−1}))
- \mathcal{T}_{f} convex cone induced by $f = \|\mathbf{x}\|_{sig} \lambda \langle \mathbf{x}, \phi \rangle$
- $\gamma(\xi) = \mathbb{E} \sup_{x \in \xi} |\langle \mathbf{x}, \mathbf{g} \rangle|$, $\mathbf{g} \sim \mathcal{N}(0, 1) \rightarrow \text{Gaussian complexity}$

Let \mathbf{x}^* and $\hat{\mathbf{x}}$ be the true and estimated sparse signal Define,

- $v_1 := \max_{\mathbf{w} \in \partial ||\mathbf{x}^*|| \lambda \phi} ||\mathbf{w}||^2$
- $u_1 := ||sign(\mathbf{x}^*) \lambda \phi||^2$
- v_1 and u_1 are used to characterize the Gaussian complexity of $\mathcal{T}_f \cap \mathbb{S}^{n-1}$

Theorem: Let **A** be an $m \times n$ matrix whose rows are independent, centered, isotropic and sub-Gaussian random vectors and $\mathbf{x}^* \in \mathbb{R}^n$ be an s-sparse vector. If,

$$\sqrt{m} \ge CK^2 \min\left\{\sqrt{n \cdot \left(1 - \frac{n}{v_1} \cdot \frac{2}{\pi} \left(1 - \frac{s}{n}\right)^2\right)}, \sqrt{s + (n - s)u_1}\right\} + \epsilon$$

then with probability 1 - o(1),

$$||\mathbf{x}^* - \hat{\mathbf{x}}||_2 \leq \frac{2\delta}{\epsilon}$$

Remark:
$$v_1 = \sum_{i \in I} (sign(\mathbf{x}_i^*) - \lambda \phi_i)^2 + \sum_{i \in I^c} (1 + |\lambda \phi_i|)^2 \ge n - s$$
 hence,
• $n \cdot \left(1 - \frac{n}{v_1} \cdot \frac{2}{\pi} \left(1 - \frac{s}{n}\right)^2\right) \ge n - \frac{2}{\pi}(n - s)$

- In extreme sparsity, $n rac{2}{\pi}(n-s) \gg s$
- \bullet Suitable prior information can lead to $u_1 \to 0$
- Hence, second term dominates, leading $m = \mathcal{O}(s)$

Minimum Data Length for Integer Period Estimation Srikanth Venkata Tenneti and Palghat P. Vaidyanathan

Objective: Derive minimum number of samples required to estimate period of a signal independent of algorithms

- Common intuition 2P samples, if P is the true period
- Can do better if some additional information present

Theorem: Let x(n) be a periodic signal, whose period is known to lie in the integer set $P = \{P_1, P_2, ..., P_K\}$. To estimate the period using L consecutive samples, it is both necessary and sufficient that:

$$L \ge L_{min} = \max_{P_i, P_i \in P} P_i + P_j - \langle P_i, P_j \rangle$$

where, $\langle \cdot, \cdot \rangle$ is the greatest common divisor

Consider a sequence with period either 4 or 10. L \geq 10 + 4 - 2 = 12 Period 4: AGAT AGAT AGA Period 10: AGATAGATAG A Undecided, until 12th element is not shown. If x(12) = T, P = 4 If x(12) = G, P = 10

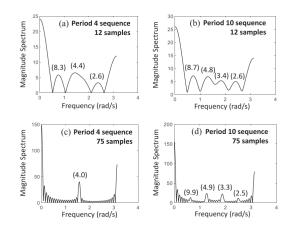


Figure 2 : DFT spectra with A = 1, T = 2, C = 3, G = 4

Uniform Recovery Bounds for Structured Random Matrices in Corrupted Compressed Sensing

Goal

• Uniform recovery guarantee for the following problem:

$$\mathbf{y} = \mathbf{A}\mathbf{x}^* + \mathbf{z}^* + \mathbf{w}$$

where, \bm{x}^* and \bm{z}^* are unknown sparse vectors and \bm{w} is dense noise with bounded energy

- They provide RIP constants for structured matrix A
- **A** = **UDB**, where **U** is a unit-norm tight frame, **D** is a diagonal matrix with independent zero-mean and unit variance sub-gaussian entries and, **B** is column-wise orthonormal matrix i.e., **B*****B** = **I**
- Such structured matrix is used in designing mask for double random phase encoding
- It encompasses structured matrices like partial random circulant matrices and random probing

Theorem: Suppose $\mathbf{y} = \mathbf{A}\mathbf{x}^* + \mathbf{z}^* + \mathbf{w}$ with $\mathbf{\Theta} = [\mathbf{A} \ \mathbf{I}]$, $\mathbf{A} = \mathbf{UDB}$, $||\mathbf{x}^*||_0 \le s$ and $||\mathbf{z}^*||_0 \le k$. If, for $\delta \in (0, 1)$ $m \ge c_1 \delta^{-2} s \ \hat{n} \mu^2(\mathbf{B}) \log^2 s \log^2 \hat{n}$ $m \ge c_1 \delta^{-2} k \log^2 k \log^2 \hat{n}$ then with probability at least $1 - 2\hat{n}^{-\log^2 s \log \hat{n}}$, $\delta_{s,k} \le \delta$

Other interesting papers

- M. Wang, Z. Zhang, and A. Nehorai, Jr.," Performance Analysis of Coarray-Based MUSIC in the Presence of Sensor Location Errors"
- X. Shen and Y. Gu, "Nonconvex Sparse Logistic Regression With Weakly Convex Regularization"
- H. Fu and Y. Chi, "Quantized Spectral Compressed Sensing: Cramer?Rao Bounds and Recovery Algorithms"
- S. Zhang, S. Liu, V. Sharma, and P. K. Varshney, "Optimal Sensor Collaboration for Parameter Tracking Using Energy Harvesting Sensors"
- Z. You, R. Raich, X. Z. Fern, and J. Kim, "Weakly Supervised Dictionary Learning"
- D. Spano, M. Alodeh, S. Chatzinotas, and B. Ottersten, "Symbol-Level Precoding for the Nonlinear Multiuser MISO Downlink Channel"