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Signal Recovery From Unlabeled Samples

unlabeled sensing
B v

Overdetermined set of linear equations
Measurement mismatch via measurement devices
Elements are not in proper order

Not all elements of z are known
123

Few papers in recent times

1JU, M Vetterli,” Unlabeled sensing with random linear measurements”, IEEE TIT'15

2AP, M Wainwright” Linear Regression with Shuffled Data: Statistical and
Computational Limits of Permutation Recovery”, IEEE TIT'17

3D Hu et al., " Linear regression without correspondence”, NIPS 2017



Signal Recovery From Unlabeled Samples

@ In this paper, authors consider unlabelled, noisy and ORDERED

samples
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x =SBy +w

@ B, is a known matrix, w is noise

@ Problem formulation,

@ S, «n is an unknown matrix with only a single 1 in each row

@ Given B and x estimate S and y



Contributions
Devised a recovery algorithm based on alternating minimization

For a fixed S, the optimal y corresponds to least-squares solution of

an overdetermined system

For a fixed y, computing the optimal S is formulated as Dynamic

Programming problem

They provide theoretical guarantees for stable signal recovery in terms

of RIP-type properties of H

x =SBy +w = (y' ®S)vec(B) +w
~———

n = 1000. Averaged over
1000 independent
realizations of S and B
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A Compact Formulation for the ¢, ; Mixed-Norm

Minimization Problem

Consider the MMV sparse recovery problem,
Ym><L = Am><an><L + meL

Theorem: The row-sparsity inducing ¢ 1 mixed-norm minimization
problem

1
min 5 [AX = Y[ + WX
is equivalent to the convex problem

min Tr((ASAH 4+ Al,,)7IR) + Tr(S),
SeD.

with R = YYH /L denoting the sample covariance matrix and D,
describing the set of nonnegative diagonal matrices and,

X = SA"(ASAF + Al LY.



Benefits of SPARse ROW-norm reconstruction (SPARROW)-:

@ Low complexity algorithms
@ Mixed norm formulation had nL variables, SPARROW has only n

variables
@ Reduced problem size as SPARROW depends only on YYH(m x m)

instead of Y(m x L)
Few recent papers using the SPARROW to improve complexity,

Low-complexity massive MIMO subspace estimation and tracking from low-
dimensional projections

S Haghighatshoar, G Caire - arXiv preprint arXiv:1608.02477, 2016 - arxiv.org

Improved Scaling Law for Activity Detection in Massive MIMO Systems

S Haghighatshoar, P Jung, G Caire - arXiv preprint arXiv:1803.02288, 2018 - arxiv.org
Block-and Rank-Sparse Recovery for Direction Finding in Partly Calibrated
Arrays

C Steffens, M Pesavento - IEEE Transactions on Signal
Joint active device identification and symbol detection using sparse constraints in
massive MIMO systems
G Hegde. M Pesavento... - ... (EUSIPCQ), 2017 25th ..., 2017 - ieeexplore.ieee.org

Gridless compressed sensing under shift-invariant sampling
C Steffens, W Suleiman, A Sorg... - Acoustics, Speech and ..., 2017 - ieeexplore ieee.org

2017 - ieeexplore.ieee.org




Core result:

I 2
— - + 1
lIxkllo min 2(|’Yk| Igxll2) (1)
st VkEk = Xk, (2)

Any feasible solution must satisfy,

xiclly = /vl llgll3 < (|’7k|2 + llgll3) (3)

Equality will hold iff [vk| = [|g/l2
Hence,

1Xll2,1 = Z Ixkll, = min_ (IIFIIF + Gl (4)

s.t. X=1TIG, (5)



Using above equation,

MWL
Frgﬂlj)n fIIAFG YHF+7(HF”F+HGHF) (6)

For a fixed I, the minimizer of G has a closed form expression
G = (IMAMAT +AVI,) 'rHaty
= rAAR (ATTHAR £ VL) Y, (7)

Inserting G

min \f (Tr((APTHAY £ AVLL) YYH) + TH(rTH)). (8)

Upon substituting R= YYH /L and defining nonnegative diagonal matrix
S = FFH/\E we get,

SnewliD)n é(Tr((ASAH + /\Im)_lﬁ) + Tr(S)). 9)



Outlier-Robust Matrix Completion via £,-Minimization

Goal

e Compute robust solution for noisy (not necessarily Gaussian) Matrix
Completion problem

Problem formulation
o X = Xp,xn, + E
@ Estimate a low-rank matrix, X from few noisy entries Xq
i V) — XqollP 1
pip (U)o — Xal 3 (10)

where, U € R"*" and V € R
Contributions

@ They propose two methods to solve the above problem
@ The first uses iterative ,-regression while second uses ADMM

@ Superior to the singular value thresholding, and alternating projection
schemes in terms of computational simplicity, statistical accuracy, and
outlier-robustness.



lterative /,-regression

Use alternating minimization strategy,

Vi = argmin |(UV)q — Xol[} (11)
Ut = arg min [|(UV*™ ) — Xal|7 (12)
Focus on one term,
. . T
min [|(UV)q — Xa|§ = min Z Jui Ty — X;° (13)
i,jeQ
mn I
: T

= m\}n;;wi vj—X,-J-|” (14)

J=li=

Consider one subproblem,
I
min ) _ |[Uzy; — bz |3 (15)
Tz

Solve the above problem via weighted iterative least-squares



Other interesting papers

@ J. Mo, P. Schniter, and R. W. Heath, Jr.,” Channel Estimation in
Broadband Millimeter Wave MIMO Systems With Few-Bit
ADCs"

@ R. Zhao, W. B. Haskell, and V. Y. F. Tan, " Stochastic L-BFGS:
Improved Convergence Rates and Practical Acceleration
Strategies”

o |. Bergel and Y. Noam, "Lower Bound on the Localization Error
in Infinite Networks With Random Sensor Locations”

e F. Van Eeghem, O. Debals, and L. De Lathauwer, " Tensor Similarity
in Two Modes"

@ Y. Gao, H. Vinck, and T. Kaiser, "Massive MIMO Antenna
Selection: Switching Architectures, Capacity Bounds, and
Optimal Antenna Selection Algorithms”

@ D. Spano, M. Alodeh, S. Chatzinotas, and B. Ottersten,
"Symbol-Level Precoding for the Nonlinear Multiuser MISO
Downlink Channel’



