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Signal Recovery From Unlabeled Samples

Overdetermined set of linear equations

Measurement mismatch via measurement devices

Elements are not in proper order

Not all elements of z are known

Few papers in recent times 1 2 3

1JU, M Vetterli,”Unlabeled sensing with random linear measurements”, IEEE TIT’15
2AP, M Wainwright”Linear Regression with Shuffled Data: Statistical and

Computational Limits of Permutation Recovery”, IEEE TIT’17
3D Hu et al., ”Linear regression without correspondence”, NIPS 2017



Signal Recovery From Unlabeled Samples

In this paper, authors consider unlabelled, noisy and ORDERED
samples

Problem formulation,

x = SBy + w

Bn×k is a known matrix, w is noise

Sm×n is an unknown matrix with only a single 1 in each row

Given B and x estimate S and y



Contributions

Devised a recovery algorithm based on alternating minimization
For a fixed S, the optimal y corresponds to least-squares solution of
an overdetermined system
For a fixed y, computing the optimal S is formulated as Dynamic
Programming problem
They provide theoretical guarantees for stable signal recovery in terms
of RIP-type properties of H

x = SBy + w = (yT ⊗ S)︸ ︷︷ ︸
H

vec(B) + w

n = 1000. Averaged over
1000 independent
realizations of S and B



A Compact Formulation for the `2,1 Mixed-Norm
Minimization Problem

Consider the MMV sparse recovery problem,

Ym×L = Am×nXn×L + Wm×L

Theorem: The row-sparsity inducing `2,1 mixed-norm minimization
problem

min
X

1

2
‖AX− Y‖2

F + λ
√
L‖X‖2,1

is equivalent to the convex problem

min
S∈D+

Tr((ASAH + λIm)−1R̂) + Tr(S),

with R̂ = YYH/L denoting the sample covariance matrix and D+

describing the set of nonnegative diagonal matrices and,

X̂ = ŜA
H

(AŜAH + λIm)−1Y.



Benefits of SPARse ROW-norm reconstruction (SPARROW)-:

Low complexity algorithms

Mixed norm formulation had nL variables, SPARROW has only n
variables

Reduced problem size as SPARROW depends only on YYH(m ×m)
instead of Y(m × L)

Few recent papers using the SPARROW to improve complexity,



Proof:

Core result:

‖xk‖2 = min
γk ,gk

1

2
(|γk |2 + ‖gk‖2

2) (1)

s.t. γkgk = xk , (2)

Any feasible solution must satisfy,

‖xk‖2 =
√
|γk |2‖gk‖2

2 ≤
1

2
(|γk |2 + ‖gk‖2

2) (3)

Equality will hold iff |γk | = ‖gk‖2

Hence,

‖X‖2,1 =
K∑

k=1

‖xk‖2 = min
Γ∈D,G

1

2
(‖Γ ‖2

F + ‖G‖2
F) (4)

s.t. X = ΓG, (5)



Using above equation,

min
Γ∈D,G

1

2
‖AΓG− Y‖2

F +
λ
√
L

2
(‖Γ ‖2

F + ‖G‖2
F). (6)

For a fixed Γ , the minimizer of Ĝ has a closed form expression

Ĝ =
(
ΓHAHAΓ + λ

√
LIn
)−1

ΓHAHY

= ΓHAH
(
AΓΓHAH + λ

√
LIm
)−1

Y, (7)

Inserting Ĝ,

min
Γ∈D

√
L

2

(
Tr
(
(AΓΓHAH + λ

√
LIm)−1YYH

)
+ Tr

(
ΓΓH

))
. (8)

Upon substituting R̂ = YYH/L and defining nonnegative diagonal matrix
S = ΓΓH/

√
L we get,

min
S∈D+

L

2

(
Tr
(
(ASAH + λIm)−1R̂

)
+ Tr

(
S
))
. (9)



Outlier-Robust Matrix Completion via `p-Minimization

Goal

Compute robust solution for noisy (not necessarily Gaussian) Matrix
Completion problem

Problem formulation

X = X̂n1×n2 + E

Estimate a low-rank matrix, X̂ from few noisy entries XΩ

min
U,V
||(UV)Ω − XΩ||pp (10)

where, U ∈ Rn1×r and V ∈ Rr×n2

Contributions

They propose two methods to solve the above problem

The first uses iterative `p-regression while second uses ADMM

Superior to the singular value thresholding, and alternating projection
schemes in terms of computational simplicity, statistical accuracy, and
outlier-robustness.



Iterative `p-regression

Use alternating minimization strategy,

Vk+1 = arg min
U
||(UkV)Ω − XΩ||pp (11)

Uk+1 = arg min
V
||(UVk+1)Ω − XΩ||pp (12)

Focus on one term,

min
V
||(UV)Ω − XΩ||pp = min

V

∑
i ,j∈Ω

|ui
Tvj − Xij |p (13)

= min
V

n2∑
j=1

Ij∑
i=1

|ui
Tvj − Xij |p (14)

Consider one subproblem,

min
vj

Ij∑
i=1

||UIj
vj − bIj ||

p
p (15)

Solve the above problem via weighted iterative least-squares
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