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Designing Incoherent Frames Through Convex Techniques
for Optimized Compressed Sensing
Cristian Rusu and Nuria Gonzlez-Prelcic

Definition

A family of vectors F = {fi}Ni=1 in Rm is called a frame for Rm, if
there exist constants 0 < A ≤ B <∞ such that

A ‖x‖2 ≤
n∑

i=1

|〈x , fi 〉|2 ≤ B ‖x‖2 (1)

If A = B, then F is an A−tight frame.

If ‖fi‖ = 1 for all i and if there exist α ≥ 0 such that
|〈fi , fj〉| = α for all i 6= j then F is an Equiangular

Grassmannian frame is one that minimizes the maximal
correlation 〈fi , fj〉 among all frames F = {fi}Ni=1
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Mutual coherence of a frame is largest absolute inner-product
between different normalized elements of F

This paper is concerned the problem of designing real frames
with low mutual coherence

One can find the solution for above mentioned problem by
solving the following Optimization problem:

min{F}max{i 6=j}|〈fi , fj〉| s. t ‖fi‖2 = 1 for all i (2)

The authors have proceed to relax this problem and provide
convex optimization formulations to solve it approximately

The approach taken in this paper is for given a frame
H = {hi}Ni=1 to find a new frame F = {fi}Ni=1 that is near to
the initial one, with smaller mutual coherence by solving the
following convex optimization problem: For all i = 1, . . . ,N

min{fi ;‖fi−hi‖22≤Ti}max{j ; j 6=i}|〈hj , fi 〉| (3)
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Enhanced Sparsity by Non-Separable Regularization
Ivan W. Selesnick and lker Bayram

The authors have developed a convex approach for sparse
deconvolution that improves upon l1-norm regularization

They have posed the sparse deconvolution problem named as
BISR in the following way:

x̃ = arg minx∈R2

{
f (x) =

1

2
‖y − Hx‖22 + λΨ(x)

}
, (4)

where, λ > 0 and Ψ(x) : R2 → R is a penalty function.

This method is based on designing a non-convex penalty
function Ψ(x) so that the objective function is convex

The new penalty overcomes limitations of separable
regularization.

They have given an algorithm for above mentioned problem.
Further,this bivariate problem has been extended to an
N−point linear inverse problem 4 / 8



Compressed nonnegative matrix factorization is fast and
accurate
Mariano Tepper and Guillermo Sapiro

In recent years, Nonnegative Matrix Factorization (NMF) has
been frequently used since it provides a good way for
modeling many real-life applications

NMF seeks to represent a nonnegative matrix as the product
of two nonnegative matrices

One can find the solution of NMF by solving the following
optimization problem:

min{X∈Rm×r ,Y∈Rr×n}‖A− XY ‖2F s. t X ,Y ≥ 0 (5)

where r is a parameter that controls the size of factors X and
Y and, hence, the factorization’s accuracy.

In the general case, NMF is known to be NP-Hard
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However, there are matrices that exhibit a particular structure
such that NMF can be solved efficiently

A nonnegative matrix A is r−separable if there exists an index
set K of cardinality r over the columns of A and a
nonnegative matrix Y ∈ Rr×n, such that A = (A):KY

When A presents this type of special structure, the NMF
problem (now denoted as separable NMF, SNMF) can be
simply modeled as

min{K⊂{1,...,n},Y∈Rr×n}‖A−(A):KY ‖2F s. t |K| = r ,Y ≥ 0 (6)

The goal of this paper is to develop algorithms, based on
structured random projections, for computing NMF for big
data matrices

The authors have showed that the resulting compressed
techniques are faster than their uncompressed variants, vastly
reduce memory demands
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Other Interesting Papers

Analysis of a Subset Selection Scheme for Wireless Sensor
Networks in Time-Varying Fading Channels by S. H. Mousavi,
et.al.

Collaborative Multi-Sensor Classification Via Sparsity-Based
Representation by M. Dao, et.al.

7 / 8



Thank you
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