Transactions on Wireless Communication, Aug 2013

Mishfad S V

Indian Institute of Science, Bangalore

mishfad@gmail.com

7/9/2013

Mishfad S V (IISc)

TWC, Aug 2013

7/9/2013 1 / 21

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Downlink Base Station Cooperative Transmission Under Limited-Capacity Backhaul

- Qian Zhang, Chenyang Yang (Beihang University, Beijing, China)
- A.F. Molisch (USC, LA)

Index Terms-Coordinated multi-point transmission, transmission mode switching, limited-capacity backhaul.

- Downlink Coordinated Multi-Point transmission (CoMP) strategies with limited-capacity backhaul
- Switch between CoMP-CB and CoMP-JP transmission modes.
- Proposed soft mode switching and hard mode switching

Figure: System model

Mishfad S V (IISc)	Mish	fad S	SV (IISc)
--------------------	------	-------	------	-------

TWC, Aug 2013

イロト イヨト イヨト イヨト

- Cluster consisting of *B* BSs, each equipped with *N_t* antennas.
- In the CoMP-CB mode, each BS serves M active single antenna mobile stations (MSs).
- In the CoMP-JP mode, the cooperating BSs jointly serve BM active single-antenna MSs

Soft Mode Switching

- Rate splitting into a common data and private data
- Common data by CoMP-JP mode and private data by CoMP-CB
- ZFBF is employed
- Optimization problem not convex.
- Constraints satisfy Mangasarian-Fromovitz constraint qualification (MFCQ)

Hard Mode Switching

- All users are divided into either CoMP-CB or CoMP-JP
- Realized by comparing the achievable rates under the two modes
 - Joint Hard Mode Switching
 - Distributed Hard Mode switching
 - Semi-Dynamic Mode Switching

Downlink Coordinated Multi-Point with Overhead Modeling in Heterogeneous Cellular Networks

- Ping Xia (Qualcomm Inc.,)
- Chun-Hung Liu (National Cheng Kung University, Tainan, Taiwan)
- Jeffrey G. Andrews (UT Austin)

IndexTerms-Heterogeneous cellular networks, downlink coordinated multi-point transmission, interference management, stochastic geometry

Problems with previous approach

- They usually ignore the inter-cell overhead messaging delay, although it results in an irreducible performance bound
- Considers the grid or Wyner model for base station locations

Contributions

- Develops a novel framework, which considers overhead delay for CoMP evaluation in HCNs
- As an eg., application to downlink CoMP ZFBF explained

- K-tier HCN (i.e., K types of BSs)
- All tiers distributed independently on \mathbb{R}^2
- BSs in the kth tier distributed according to homogeneous PPP
- The end-user will listen to the downlink pilot signals from different BSs, and measure their long-term average powers
- The end user is associated with the BS from whom it receives the strongest average power
- i.i.d channel assumed

Mis	hfad	SV	(IISc)

Figure: TWC, Aug 2013 < ≣ ► ≣ ৩৭০ 7/9/2013 11/21

- Impact of Overhead Delay
 - Two major imperfections : Delay and Quantization inaccuracy
 - Delays due to propagation time delay and imperfections of overhead channel
 - Time window divided into overhead messaging phase and cooperation phase
- Effects of delay on CoMP ZFBF
 - Throughput is not increased when the overhead channel delay is larger than 60% the channel coherence time
 - In most cases, coordinating with only one other cell is nearly optimum for downlink

On Optimizing Green Energy Utilization for Cellular Networks with Hybrid Energy Supplies

 Tao Han and Nirwan Ansari (New Jersey Institute of Technology, Newark, NJ)

IndexTerms-Green communications, energy efficient networking, renewable energy, cellular networks

- Optimizes the energy utilization in such networks by maximizing the utilization of green energy, and thus saving on-grid energy
- GEO decomposed into Multi-stage Energy Allocation (MEA) and Multi-BSs Energy Balancing (MEB)
- MEA : Optimize the green energy allocation at individual BSs to accommodate the temporal dynamics of both energy generation and the mobile traffic
- MEB : To balance the green energy consumption among BSs to reduce on-grid consumption
- Energy consumption of BS adjusted by adapting the cell size

(日)

- At a time slot, if a BS's stored green energy > energy demand, the BS is powered by green energy; otherwise, by on-grid energy
- Cellular network experience high traffic volumes (i.e., no sleep mode of BS)
- Solar panel generate power during day-time
- Energy consumption directly related to the traffic load on BS
- Considers temporal and spatial variations in traffic

MEA

Based on energy drain ratio (EDR)

$$\min_{\substack{(E_{1,j}^{A},...,E_{i,j}^{A},...,E_{L,j}^{A})}} (\delta_{1,j}, \delta_{2,j}, ..., \delta_{L,j})$$
subject to : $E_{i,j}^{S} = E_{i-1,j}^{S} + \alpha_{i-1}\tau - E_{i-1,j}^{A},$
 $E_{i,j}^{A} \leq E_{i,j}^{S} + \alpha_{i}\tau$

Probability of consuming on-grid energy is reduced

MEB

- Adaptation of cell sizes
- BS with more green energy enforced to have larger cell size
- MEB problem is NP-Hard

Coping with a Smart Jammer in Wireless Networks: A Stackelberg Game Approach

Dejun Yang, Guoliang Xue, Jin Zhang, Andrea Richa, and Xi Fang (Arizona State Univ)

IndexTerms-Jamming, Stackelberg Game

- Smart jammer: Can quickly learn the transmission pattern of the user and adaptively adjust its jamming strategy to maximize the damaging effect.
- Actions taken not simultaneous
- Hence Nash Equilibrium is not the best solution
- Stackelberg game (A leader and a follower) serves the purpose
- SINR as the reward of the user

Rendezvous Enhancement in Arbitrary-Duty-Cycled Wireless Sensor Networks

 Chih-Min Chao, Lin-Fei Lien, and Chien-Yu Hsu (National Taiwan Ocean Univ)

IndexTerms-Wireless sensor networks, low duty cycle networks, rendezvous problem

- If active periods not properly scheduled, sensor nodes may not be able to communicate with another node
- Proposes a Staggered Scheduling protocol which
 - Ensures rendezvous between each pair of nodes
 - Produce lower rendezvous variance
 - Nodes can independently choose their target duty cycles
- Uses Chinese Remainder Theorem (CRT) to design awake/sleep mechanism

Other papers

- A Markov Decision Theoretic Approach to Pilot Allocation and Receive Antenna Selection
- An Analytical Approach to the Design of Energy Harvesting Wireless Sensor Nodes
- Reduced-Complexity Robust MIMO Decoders
- Structured and Sparse Limited Feedback Codebooks for Multiuser MIMO
- Towards a Simple Relationship to Estimate the Capacity of Static and Mobile Wireless Networks

< 同 > < 三 > < 三 >