Journal Watch

IEEE Transaction on Wireless Communication 01 October, 2015

Monika Bansal Signal Processing Lab for Communication IISc

October 24, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dan Wu, Yueming Cai, Rose Qingyang Hu, and Yi Qian

Dan Wu, Yueming Cai, Rose Qingyang Hu, and Yi Qian

Jointly considers: mode selection, resource allocations and power control.

Dan Wu, Yueming Cai, Rose Qingyang Hu, and Yi Qian

Jointly considers: mode selection, resource allocations and power control.

Hedonic coalition formation $\phi_j(S_i) = R_i^j(p_i^j, q_j) + R_j(p_i^j, q_j)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dan Wu, Yueming Cai, Rose Qingyang Hu, and Yi Qian

Uplink User-Assisted Relaying in Cellular Networks

Hussain Elkotby, Student Member, IEEE, and Mai Vu, Senior Member, IEEE

Phase1: $Y_r^b = h_{sr}x_s^b + Z_r^b$, $Y_d^b = h_{sd}x_s^b + Z_d^b$ Phase2: $Y_d^m = h_{sd}x_s^m + h_{rd}x_r^m + Z_d^m$

Uplink User-Assisted Relaying in Cellular Networks

Hussain Elkotby, Student Member, IEEE, and Mai Vu, Senior Member, IEEE

Transmission strategy: $B_k \sim Bern(\rho)$ $B_k = 0$, Direct transmission $B_k = 1$, Take help of idle user

Cooperation policies:

$$\begin{split} & E_{1} = \{ |\tilde{h}_{sr}^{(k)}|^{2} \ge |\tilde{h}_{sd}^{(k)}|^{2} \} \cong \{ \frac{g_{sr_{2}}^{-\alpha}}{Q_{r,k}} \ge \frac{g_{sd}r_{1}^{-\alpha}}{Q_{d,k}^{b}} \} \\ & E_{2} = \{ r_{2} \le r_{1}, D \le r_{1} \} \\ & E_{3} = \{ g_{sd}r_{1}^{-\alpha} \le g_{sr}r_{2}^{-\alpha}, D \le r_{1} \} \end{split}$$

- Decision making nodes depends on specific implementation.
- Do not use power control at each user.
- They use second moment matching to model the out-of-cell interference power as a Gamma distribution.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How Many Small Cells Can be Turned Off via Vertical Offloading Under a Separation Architecture?

Shan Zhang, Student Member, IEEE, Jie Gong, Member, IEEE, Sheng Zhou, Member, IEEE, and Zhisheng Niu,

Fellow, IEEE

Hyper-cellular network:

MBS: Macro base station **SC:** Small cell

MSBs transmit at fix power.

イロト 不得 トイヨト イヨト

-

How Many Small Cells Can be Turned Off via Vertical Offloading Under a Separation Architecture?

Shan Zhang, Student Member, IEEE, Jie Gong, Member, IEEE, Sheng Zhou, Member, IEEE, and Zhisheng Niu, Fellow, IEEE

Channel Borrowing

Analysed the outage probability.

Random scheme: SCs go into sleep w.p. p_s independently. Repulsive scheme: SCs within sleeping radius will go to sleep.

How Many Small Cells Can be Turned Off via Vertical Offloading Under a Separation Architecture?

Shan Zhang, Student Member, IEEE, Jie Gong, Member, IEEE, Sheng Zhou, Member, IEEE, and Zhisheng Niu, Fellow, IEEE

Random scheme:

Repulsive scheme:

 max_{p_s,p_m} p_s

s.t.
$$\frac{\frac{w_s}{1+\frac{\lambda_s}{\rho_s}}\log_2(1+\tau'(\rho_s)) \ge U_s}{\frac{w_m}{1+\frac{3\sqrt{3}}{\lambda_m}D^2}}\log_2(1+\tau_m) \ge U_m}$$
$$\frac{\frac{1}{1+\frac{3\sqrt{3}}{\lambda_m}D^2}}{\frac{W_m-w_m}{1+\frac{3\sqrt{3}}{\lambda_s}\rho_s\rho_mD^2}}\log_2(1+\tau_0(\alpha_m,D)) \ge U_0$$
$$\frac{W_s-w_s}{1+\frac{3\sqrt{3}}{2}\lambda_s\rho_s(1-\rho_m)D^2}\log_2(1+\tau_0(\alpha_s,D)) \ge U_0$$

$$p_m \in (0,1), \text{ with CB}$$

= 1, without CB

$$max_{R_s,p_m} \pi R_s^2 \rho_m$$

s.t.
$$\frac{\frac{W_{S}}{1+\frac{\lambda_{S}}{\rho_{S}}}\log_{2}(1+\tau_{s}) \geq U_{s}}{\frac{W_{m}}{1+\frac{3\sqrt{3}}{3}\lambda_{m}D^{2}}}\log_{2}(1+\tau_{m}) \geq U_{m}}$$
$$\frac{\frac{W_{m}-w_{m}}{\pi R_{S}^{2}\lambda_{S}\rho_{m}}}{\log_{2}(1+\tau_{0}(\alpha_{m},R_{s})) \geq U_{0}}$$
$$\frac{W_{S}-w_{S}}{\pi R_{S}^{2}\lambda_{S}(1-\rho_{m})}\log_{2}(1+\tau_{0}(\alpha_{s},R_{s})) \geq U_{0}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Joint Downlink and Uplink Aware Cell Association in HetNets With QoS Provisioning

Hamidreza Boostanimehr and Vijay K. Bhargava, Life Fellow, IEEE

Joint Downlink and Uplink Aware Cell Association in HetNets With QoS Provisioning

Hamidreza Boostanimehr and Vijay K. Bhargava, Life Fellow, IEEE

Problem Formulation:

$$\mathbf{P}: \max_{\mathbf{x}, \mathbf{n}^{DL}, \mathbf{n}^{UL}} \sum_{i \in \mathcal{U}} \sum_{j \in \mathcal{B}} x_{ij} \left(w_i^{DL} U_i(\bar{r}_{ij}^{DL}) + w_i^{UL} U_i(\bar{r}_{ij}^{UL}) \right)$$

subject to

$$\begin{array}{ll} C_1 : \sum_{i \in \mathcal{U}} x_{ij} n_{ij}^{DL} \leq N_j^{DL}, & \forall j \in \mathcal{B}, \\ C_2 : \sum_{i \in \mathcal{U}} x_{ij} n_{ij}^{UL} \leq N_j^{UL}, & \forall j \in \mathcal{B}, \\ C_3 : \sum_{j \in \mathcal{B}} x_{ij} \leq 1, & \forall i \in \mathcal{U} \\ C_4 : \prod_{j \in \mathcal{B}} (PO_{ij}^{DL})^{x_{ij}} \leq T_i^{DL}, & \forall i \in \mathcal{U}, \\ C_5 : \prod_{j \in \mathcal{B}} (PO_{ij}^{UL})^{x_{ij}} \leq T_i^{UL}, & \forall i \in \mathcal{U}, \end{array}$$

$$\begin{array}{l} \mathsf{x}_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{U} \times \mathcal{B}, \\ \mathsf{n}_{ij}^{DL} \in \{0,1,...,\mathsf{N}_{j}^{DL}\}, \forall (i,j) \in \mathcal{U} \times \mathcal{B}, \\ \mathsf{n}_{ij}^{UL} \in \{0,1,...,\mathsf{N}_{j}^{UL}\}, \forall (i,j) \in \mathcal{U} \times \mathcal{B}. \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Joint Downlink and Uplink Aware Cell Association in HetNets With QoS Provisioning

Hamidreza Boostanimehr and Vijay K. Bhargava, Life Fellow, IEEE

Base line cell association solution (centralised):

$$\mathbf{P}_{x}: max_{\mathbf{x}} \sum_{i \in \mathcal{U}} \sum_{j \in \mathcal{B}} x_{ij} a_{ij}$$

subject to

$$\begin{array}{ll} \sum_{i \in \mathcal{U}} x_{ij} \bar{n}_{ij}^{DL} \leq N_{j}^{DL}, & \forall j \in \mathcal{B}, \\ \sum_{i \in \mathcal{U}} x_{ij} \bar{n}_{ij}^{UL} \leq N_{j}^{UL}, & \forall j \in \mathcal{B}, \\ \sum_{j \in \mathcal{B}} x_{ij} \leq 1, & \forall i \in \mathcal{U} \end{array}$$

$$0 \leq x_{ij} \leq 1, \quad \forall (i,j) \in \mathcal{U} \times \mathcal{B}.$$

where

$$a_{ij} = \left(w_i^{DL}U_i(\bar{r}_{ij}^{DL}) + w_i^{UL}U_i(\bar{r}_{ij}^{UL})\right)$$

Linear program in x: Simplex method and Rounding the solution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Joint Downlink and Uplink Aware Cell Association in HetNets With QoS Provisioning

Hamidreza Boostanimehr and Vijay K. Bhargava, Life Fellow, IEEE

Distributed cell association solution:

- ► BS need to broadcast quantised interference level.
- Move budget constraints into objective function.
- Lagrange dual function is obtained which can be decoupled w.r.t. users.
- If BSs broadcast their lagrange multipliers also then user can find the best BS for it.
- After the cell association each BS distributes remaining RBs.

Other papers

- Joint Rate and SINR Coverage Analysis for Decoupled Uplink-Downlink Biased Cell Associations in HetNets. Sarabjot Singh, Xinchen Zhang, and Jeffrey G. Andrews
- Network Code Division Multiplexing for Wireless Relay Networks. Jing Yue, Zihuai Lin, Branka Vucetic, Guoqiang Mao, Ming Xiao, Baoming Bai, and Kun Pang
- Joint Power and Rate Control for Device-to-Device Communications in Cellular Systems.
 Hojin Song, Jong Yeol Ryu, Wan Choi, and Robert Schober
- Energy-Efficient Resource Allocation in Single-Cell OFDMA Systems: Multi-Objective Approach. Lukai Xu, Guanding Yu, and Yuhuan Jiang
- Online Resource Allocation for Energy Harvesting Downlink Multiuser Systems: Precoding With Modulation, Coding Rate, and Subchannel Selection. Weiliang Zeng, Yahong Rosa Zheng, and Robert Schober

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <