# Analytical Characterization of Uncertainty in the Localization of a Sensor Node 

Karthik P. N.<br>SPC Lab

March 15, 2015

## Outline

(1) Outline
(2) The Problem Setup
(3) Theorem 1: Expected Coverage of a Single Beacon
(4) Theorem 2: Average Whitespace as a Function of $r$ and $n$
(5) Proof of Theorem 1
(6) Proof of Theorem 2
(7) Uncertainty in the Localization of a Sensor
(8) Simulation Results
(9) Summary

## The Problem Setup

- A fixed number of beacon nodes (transmitters) deployed uniformly at random over an area
- Each beacon covers a circular area of radius $r$ around it (node coverage)
- The expected area covered is a function of $r$ and $n$
- A region in which every point is covered by at least $k$ beacons is said to be $k$-covered and its area is called the $k$-coverage
- A sensor (receiver) in the field of the beacons has a power vector associated with the location of its placement
- Each entry of the power vector is a binary value corresponding to the power received from a beacon
- Given a power vector, many locations over the area may be associated with the same vector, leading to uncertainty in the location of the sensor



## What We Want...

An mathematical expression relating the average uncertainty ( $U_{\text {avg }}$ ) and average whitespace ( $W_{\text {avg }}$ ) (both measured as a fraction of the total area) to $r$ and $n$, i.e.,

$$
\begin{aligned}
U_{\text {avg }}=f(r, n) & f=? \\
W_{\text {avg }}=g(r, n) & g=?
\end{aligned}
$$

## Expected Coverage of a Single Beacon

Theorem 1:
If a beacon with transmission radius $r$ is deployed uniformly at random in an $I \times b$ rectangular area $(r \leq \min (I, b) / 2)$, its expected coverage is

$$
\mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]=\frac{\frac{r^{4}}{2}-\frac{4}{3} l r^{3}-\frac{4}{3} b r^{3}+\pi r^{2} l b}{l b}
$$

where $A_{\operatorname{cov}_{(1)}}$ is a random variable representing the node coverage of a beacon and the expectation is computed over all possible locations of a beacon

## Average Whitespace as a Function of $r$ and $n$

Theorem 2 :
When $n$ beacons each with transmission radius $r$ are deployed uniformly at random in an $I \times b$ rectangular area ( $r \leq \min (I, b) / 2$ ), the average whitespace is

$$
\begin{aligned}
W_{\text {avg }} & =\left[1-\left(\frac{\frac{r^{4}}{2}-\frac{4}{3} / r^{3}-\frac{4}{3} b r^{3}+\pi r^{2} l b}{1^{2} b^{2}}\right)\right]^{n} \\
& =\left[1-\frac{\mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]}{l b}\right]^{n}
\end{aligned}
$$

where $\mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]$ is the average area covered by a beacon and the expectation is computed over all possible locations of a beacon

## Proof of Theorem 1



An $I \times b$ rectangular region over which the average area covered by a beacon deployed uniformly at random is to be computed

## Proof of Theorem 1

- Let $A_{\text {cov }_{(1)}}$ denote the area covered by a beacon of transmission radius $r$
- $A_{\operatorname{cov}_{(1)}}$ is a random variable since its value depends on the location of the beacon
- Under the assumption that each beacon is deployed uniformly at random, the pdf of the beacon location $(x, y)$ is given by

$$
f_{X, Y}(x, y)=\frac{1}{l b}, 0 \leq x \leq 1,0 \leq y \leq b
$$

- The expected value of $A_{\text {cov (1) }}$ can be written as

$$
\mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]=\int_{x=0}^{l} \int_{y=0}^{b} a_{\operatorname{cov}(1)} f_{X, Y}(x, y) d x d y
$$

## Proof of Theorem 1

- For the ease of analysis, the rectangular region is partitioned into 4 sub-regions - $R 1, R 2, R 3$ and $R 4$. The beacon can be deployed in one of the four regions
- The average area covered by a beacon may then be expressed as

$$
\mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]=\sum_{i=1}^{4} \mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]_{R i} p(R i)
$$

where $\mathbb{E}\left[A_{\operatorname{cov}^{(1)}}\right]_{R i}$ is the average area covered by a beacon deployed uniformly at random in sub-region $R i$ and $p(R i)$ is the probability that a beacon is deployed in sub-region $R i$

- In sub-region $R 1$,

$$
a_{\operatorname{cov}_{(1)}}=\pi r^{2}=\mathbb{E}\left[A_{\operatorname{cov}}(1)\right]_{R 1}
$$

## Proof of Theorem 1

- In sub-region R2,

$$
\begin{gathered}
a_{\operatorname{cov}^{(1)}}=(b-y) \sqrt{r^{2}-(b-y)^{2}}+r^{2}\left(\pi-\cos ^{-1}\left(\frac{b-y}{r}\right)\right) \\
\mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]_{R 2}=r^{2}\left(\pi-\frac{2}{3}\right)
\end{gathered}
$$

- Similar analysis yields the same value for $\mathbb{E}\left[A_{\operatorname{cov}^{(1)}}\right]_{R 3}$ as well


## Proof of Theorem 1

- In sub-region $R 4$, there arise two scenarios


Accounting for both the scenarios depicted above,

$$
\mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]_{R 4}=r^{2}\left(\pi-\frac{29}{24}\right)
$$

## Proof of Theorem 1

- $p(R 1)$ is given as follows:

$$
p(R 1)=\frac{\text { Size of sub-region R1 }}{\text { Total area of the region }}=\frac{(I-2 r)(b-2 r)}{l b}
$$

- Similarly,

$$
p(R 2)=\frac{2 r(l-2 r)}{l b}, p(R 3)=\frac{2 r(b-2 r)}{l b}, p(R 4)=\frac{4 r^{2}}{l b}
$$

- Substituting all the values yields

$$
\mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]=\frac{\frac{r^{4}}{2}-\frac{4}{3} l r^{3}-\frac{4}{3} b r^{3}+\pi r^{2} l b}{l b}
$$

## Proof of Theorem 2

- Let $E_{1}, E_{2}, \cdots, E_{n}$ denote the $n$ independent events that a location belongs to the area covered by beacon 1, beacon 2, $\cdots$, beacon $n$ respectively. From Theorem 1, we may write

$$
p\left(E_{i}\right)=\frac{\mathbb{E}\left[A_{\operatorname{cov}^{1}}(1)\right]}{l b}, 1 \leq i \leq n
$$

- Let $W$ denote the event that a location belongs to whitespace (no-coverage region) associated with the deployment of $n$ beacons. Clearly,

$$
W=\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n}\left(E_{i}\right)^{c}
$$

- The probability of occurrence of event $W$ is

$$
p(W)=\prod_{i=1}^{n} p\left[\left(E_{i}\right)^{c}\right]
$$

## Proof of Theorem 2

$$
p(W)=\left(1-\frac{\mathbb{E}\left[A_{\operatorname{cov}_{(1)}}\right]}{l b}\right)^{n}
$$

- $p(W)$ quantifies the average whitespace as a fraction of the total area. Letting $W_{\text {avg }}$ denote this, we get

$$
\begin{aligned}
W_{\text {avg }} & =\left(1-\frac{\mathbb{E}\left[A_{\text {cov }}(\mathbb{1}]\right.}{l b}\right)^{n} \\
& =\left[1-\left(\frac{r^{4}-\frac{4}{3} / r^{3}-\frac{4}{3} b r^{3}+\pi r^{2} l b}{1^{2} b^{2}}\right)\right]^{n}
\end{aligned}
$$

## Uncertainty in the Localization of a Sensor

- Every location in the area is associated with a power vector
- Given a binary-valued power vector, it is difficult to associate a unique location with it since many locations may be associated with the same vector
- Let $A_{c o v_{(\mathbb{K}}}$ be a random variable denoting the area of a region in which every location is covered by exactly $k$ out of $n$ beacons. The fraction of the total area that is exactly $k$-covered can be expressed as

$$
f_{\mathbb{K}}=\frac{\mathbb{E}\left[A_{\operatorname{cov}^{K}}\right]}{l b}
$$

## Uncertainty in the Localization of a Sensor

- There exist $\binom{n}{k}$ binary-valued power vectors having $k$ ones. The fraction of the total area associated with one such vector is

$$
f_{\mathbb{K}}^{\binom{n}{k}},=\frac{f_{\mathbb{K}}}{\binom{n}{k}}
$$

- The average uncertainty (as a fraction of the total area) in localization associated with a power vector with exactly can be expressed as

$$
U_{\text {avg }}=\sum_{k=0}^{n}\binom{n}{k}\left(f_{\mathbb{K}}^{\binom{n}{k}}\right)^{2}
$$

## Uncertainty in the Localization of a Sensor

- To analytically characterize $U_{\text {avg }}$, it is necessary to express $\mathbb{E}\left[A_{\operatorname{cov}_{\mathbb{K}} \mathrm{K}}\right]$ in terms of $r$ and $n$
- Letting $C_{n}^{k}$ denote the area covered by at least $k$ out of $n$ beacons, we may write

$$
\mathbb{E}\left[A_{\left.\operatorname{cov}_{(\mathbb{K}}\right)}\right]=\mathbb{E}\left[C_{n}^{k}\right]-\mathbb{E}\left[C_{n}^{k+1}\right]
$$

- Suppose that there are $i$ beacons deployed and the area of the $j$-covered region is $C_{i}^{j}$. If the $(i+1)^{\text {th }}$ beacon adds an extra area $X_{i+1}^{j}$ to the $j$-covered region, the new size of $j$-covered region will be

$$
C_{i+1}^{j}=C_{i}^{j}+X_{i+1}^{j}
$$

## Uncertainty in the Localization of a Sensor

- If $F_{i+1}^{j}$ denotes the fraction of the extra area contributed by the addition of the $(i+1)^{\text {th }}$ beacon, it is expected to be

$$
\mathbb{E}\left[F_{i+1}^{j}\right]=\frac{\mathbb{E}\left[C_{i}^{j}\right]-\mathbb{E}\left[C_{i}^{j+1}\right]}{l b}
$$

- An recursive formula ${ }^{1}$ shown below can be used to evaluate $\mathbb{E}\left[C_{i}^{j}\right]$

$$
\begin{aligned}
& \mathbb{E}\left[C_{i}^{j}\right]=p \mathbb{E}\left[C_{i-1}^{j-1}\right]+(1-p) \mathbb{E}\left[C_{i-1}^{j}\right] \\
\text { where } p= & \frac{\mathbb{E}\left[A_{\text {cov }}(\mathbb{1})\right]}{l b}
\end{aligned}
$$

${ }^{1}$ Result from 'Expected k-coverage in Wireless Sensor Networks', Li-Hsing Yen et al.

## Simulation Results

- $I=25 \mathrm{~m}, b=25 \mathrm{~m}$
- A $100 \times 100$ grid assumed to evaluate coverage area
- Number of random deployment experiments over which averaging is performed $=10000$


## Average Whitespace vs. r



Figure: Average whitespace (as a percentage of the total area) as a function of beacon radius. The mean absolute percentage error between theoretical and experimental values $=5.98 \%$

## Average Uncertainty vs. $r$



Figure: Average uncertainty (as a percentage of the total area) as a function of beacon radius for $n=3$ and $r=0: 2: 10 \mathrm{~m}$.

## Summary

- Average uncertainty in the localization of a sensor placed in a field of beacons and available whitespace are functions of beacon radius ( $r$ ) and number of beacons ( $n$ )
- The expected coverage of a single beacon deployed in a region of finite dimensions is lesser than its node coverage
- When two or more beacons are deployed uniformly at random, the average size of whitespace region is a polynomial decreasing function of beacon radius
- The average uncertainty in the association of a unique location in the region, given a vector of power values, attains a minimum for a certain value of $r$, for a given value of $n$.

