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The Problem Setup

• A fixed number of beacon nodes (transmitters) deployed
uniformly at random over an area

• Each beacon covers a circular area of radius r around it (node
coverage)

• The expected area covered is a function of r and n

• A region in which every point is covered by at least k beacons
is said to be k−covered and its area is called the k−coverage



• A sensor (receiver) in the field of the beacons has a power
vector associated with the location of its placement

• Each entry of the power vector is a binary value corresponding
to the power received from a beacon

• Given a power vector, many locations over the area may be
associated with the same vector, leading to uncertainty in the
location of the sensor



What We Want...
An mathematical expression relating the average uncertainty
(Uavg ) and average whitespace (Wavg ) (both measured as a
fraction of the total area) to r and n, i.e.,

Uavg = f (r , n) f =?

Wavg = g(r , n) g =?



Expected Coverage of a Single Beacon

Theorem 1 :
If a beacon with transmission radius r is deployed uniformly at
random in an l × b rectangular area (r ≤ min(l , b)/2), its expected
coverage is
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where Acov 1© is a random variable representing the node coverage

of a beacon and the expectation is computed over all possible
locations of a beacon



Average Whitespace as a Function of r and n

Theorem 2 :
When n beacons each with transmission radius r are deployed
uniformly at random in an l × b rectangular area (r ≤ min(l , b)/2),
the average whitespace is
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where E
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is the average area covered by a beacon and the

expectation is computed over all possible locations of a beacon



Proof of Theorem 1
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An l × b rectangular region over which the average area covered by

a beacon deployed uniformly at random is to be computed



Proof of Theorem 1

• Let Acov 1© denote the area covered by a beacon of

transmission radius r

• Acov 1© is a random variable since its value depends on the

location of the beacon

• Under the assumption that each beacon is deployed uniformly
at random, the pdf of the beacon location (x , y) is given by

fX ,Y (x , y) =
1

lb
, 0 ≤ x ≤ l , 0 ≤ y ≤ b.

• The expected value of Acov 1© can be written as

E
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]
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∫ l
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y=0
acov 1©fX ,Y (x , y)dxdy



Proof of Theorem 1

• For the ease of analysis, the rectangular region is partitioned
into 4 sub-regions - R1, R2, R3 and R4. The beacon can be
deployed in one of the four regions

• The average area covered by a beacon may then be expressed
as
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where E
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is the average area covered by a beacon

deployed uniformly at random in sub-region Ri and p(Ri) is
the probability that a beacon is deployed in sub-region Ri

• In sub-region R1,

acov 1© = πr2 = E
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]
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Proof of Theorem 1

• In sub-region R2,
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Proof of Theorem 1

• In sub-region R4, there arise two scenarios

Accounting for both the scenarios depicted above,
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Proof of Theorem 1

• p(R1) is given as follows:

p(R1) =
Size of sub-region R1

Total area of the region
=

(l − 2r)(b − 2r)

lb

• Similarly,

p(R2) =
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lb
, p(R3) =
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, p(R4) =
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• Substituting all the values yields
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Proof of Theorem 2

• Let E1, E2, · · · , En denote the n independent events that a
location belongs to the area covered by beacon 1, beacon 2,
· · · , beacon n respectively. From Theorem 1, we may write

p (Ei ) =

E
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]
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, 1 ≤ i ≤ n

• Let W denote the event that a location belongs to whitespace
(no-coverage region) associated with the deployment of n
beacons. Clearly,
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• The probability of occurrence of event W is
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Proof of Theorem 2

p(W ) =
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• p(W ) quantifies the average whitespace as a fraction of the
total area. Letting Wavg denote this, we get
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Uncertainty in the Localization of a Sensor

• Every location in the area is associated with a power vector

• Given a binary-valued power vector, it is difficult to associate
a unique location with it since many locations may be
associated with the same vector

• Let Acov k© be a random variable denoting the area of a region

in which every location is covered by exactly k out of n
beacons. The fraction of the total area that is exactly
k−covered can be expressed as

f k© =
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Uncertainty in the Localization of a Sensor

• There exist
(n
k

)
binary-valued power vectors having k ones.

The fraction of the total area associated with one such vector
is

f k©(nk)
=

f k©(n
k

)
• The average uncertainty (as a fraction of the total area) in

localization associated with a power vector with exactly can
be expressed as
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Uncertainty in the Localization of a Sensor

• To analytically characterize Uavg , it is necessary to express

E
[
Acov k©

]
in terms of r and n

• Letting C k
n denote the area covered by at least k out of n

beacons, we may write
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]
• Suppose that there are i beacons deployed and the area of the
j−covered region is C j

i . If the (i + 1)th beacon adds an extra

area X j
i+1 to the j−covered region, the new size of j−covered

region will be
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i+1 = C j
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i+1



Uncertainty in the Localization of a Sensor

• If F j
i+1 denotes the fraction of the extra area contributed by

the addition of the (i + 1)th beacon, it is expected to be
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• An recursive formula1 shown below can be used to evaluate
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1Result from ’Expected k-coverage in Wireless Sensor Networks’, Li-Hsing
Yen et al.



Simulation Results

• l = 25m, b = 25m

• A 100 × 100 grid assumed to evaluate coverage area

• Number of random deployment experiments over which
averaging is performed = 10000



Average Whitespace vs. r
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Figure: Average whitespace (as a percentage of the total area) as a
function of beacon radius. The mean absolute percentage error between
theoretical and experimental values = 5.98%

.



Average Uncertainty vs. r
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Figure: Average uncertainty (as a percentage of the total area) as a
function of beacon radius for n = 3 and r = 0 : 2 : 10m.



Summary

• Average uncertainty in the localization of a sensor placed in a
field of beacons and available whitespace are functions of
beacon radius (r) and number of beacons (n)

• The expected coverage of a single beacon deployed in a region
of finite dimensions is lesser than its node coverage

• When two or more beacons are deployed uniformly at random,
the average size of whitespace region is a polynomial
decreasing function of beacon radius

• The average uncertainty in the association of a unique
location in the region, given a vector of power values, attains
a minimum for a certain value of r , for a given value of n.
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