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The Problem Setup

A fixed number of beacon nodes (transmitters) deployed
uniformly at random over an area

Each beacon covers a circular area of radius r around it (node
coverage)

The expected area covered is a function of r and n

e A region in which every point is covered by at least k beacons
is said to be k—covered and its area is called the k—coverage



e A sensor (receiver) in the field of the beacons has a power
vector associated with the location of its placement

e Each entry of the power vector is a binary value corresponding
to the power received from a beacon

e Given a power vector, many locations over the area may be

associated with the same vector, leading to uncertainty in the
location of the sensor
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What We Want...
An mathematical expression relating the average uncertainty

(Uavg) and average whitespace (W,,z) (both measured as a
fraction of the total area) to r and n, i.e.,

Beacon

Uavg = f(r,n) f =7
Wave = g(r,n) g=?



Expected Coverage of a Single Beacon

Theorem 1 :

If a beacon with transmission radius r is deployed uniformly at
random in an | X b rectangular area (r < min(l,b)/2), its expected
coverage is

o %/r3 - %br3 + 7rilb

E |:Acov®:| = 2 b

where ACOV@ is a random variable representing the node coverage

of a beacon and the expectation is computed over all possible
locations of a beacon



Average Whitespace as a Function of r and n

Theorem 2 :
When n beacons each with transmission radius r are deployed

uniformly at random in an | x b rectangular area (r < min(l, b)/2),
the average whitespace is

W __1 (g—glr3—gbr3+ﬂr2/b>]n
avg — -

I2b?
E |:Acov®]
b
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where E [ACOV@)] is the average area covered by a beacon and the

expectation is computed over all possible locations of a beacon



Proof of Theorem 1
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An | x b rectangular region over which the average area covered by
a beacon deployed uniformly at random is to be computed



Proof of Theorem 1

o Let ACOV® denote the area covered by a beacon of
transmission radius r

o Acov~ Is a random variable since its value depends on the
location of the beacon

e Under the assumption that each beacon is deployed uniformly
at random, the pdf of the beacon location (x,y) is given by

1
fX,Y(Xay):Ea ngéla Oﬁyﬁb

e The expected value of ACOV® can be written as

/ b
E Acov = cov, f 3 dxd
[ ®] /x—O /y—oa D x.y (. y)dxdy



Proof of Theorem 1

e For the ease of analysis, the rectangular region is partitioned
into 4 sub-regions - R1, R2, R3 and R4. The beacon can be
deployed in one of the four regions

e The average area covered by a beacon may then be expressed
as

Ri

E [Acov®:| = ;X:;E {ACO@] p(Ri)

where E [ACOVCD] is the average area covered by a beacon
Ri

deployed uniformly at random in sub-region Ri and p(Ri) is
the probability that a beacon is deployed in sub-region Ri

e In sub-region R1,



Proof of Theorem 1

e In sub-region R2,

deov =(b—y)r2=(b-yp+r <7r—cos_1 (b:y>>

fa] (-3

e Similar analysis yields the same value for E [ACOV

o).

as well



Proof of Theorem 1

e In sub-region R4, there arise two scenarios




Proof of Theorem 1

e p(R1) is given as follows:
Size of sub-region R1 (I —2r)(b—2r)

R1) = =
p(R1) Total area of the region Ib
e Similarly,
_2r(l—2r) _2r(b—2r) _ 4r?
p(R2) = T p(R3) = T p(R4) = b
e Substituting all the values yields
4.3 443 2
E ACOV _ 5 §/r — §bl’ —+ mr /b .
D Ib



Proof of Theorem 2

o Let £y, Ep, ---, E, denote the n independent events that a
location belongs to the area covered by beacon 1, beacon 2,
-+, beacon n respectively. From Theorem 1, we may write

& )
P(Ei):/ba>> 1<i<n

e Let W denote the event that a location belongs to whitespace
(no-coverage region) associated with the deployment of n
beacons. Clearly,

W = (U E,-) = (E)°
i=1 i=1

e The probability of occurrence of event W is

p(W) =[] PUE)]
i1



Proof of Theorem 2

e p(W) quantifies the average whitespace as a fraction of the
total area. Letting W, denote this, we get

n

Woe = | 1 -

e (;—glr3—‘3‘br3+m2/b>] .

i
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Uncertainty in the Localization of a Sensor

e Every location in the area is associated with a power vector

e Given a binary-valued power vector, it is difficult to associate
a unique location with it since many locations may be
associated with the same vector

e Let Acov . be a random variable denoting the area of a region

in which every location is covered by exactly k out of n
beacons. The fraction of the total area that is exactly
k—covered can be expressed as

]:E [ACOV®:|

o= """



Uncertainty in the Localization of a Sensor

e There exist (Z) binary-valued power vectors having k ones.
The fraction of the total area associated with one such vector
is

®
f, ==
n n
®o ()
e The average uncertainty (as a fraction of the total area) in
localization associated with a power vector with exactly can

be expressed as
n 2
n
Uavg = < ) (f )
=\ ©)



Uncertainty in the Localization of a Sensor

e To analytically characterize U,g, it is necessary to express

E [Acov®

o Letting CX denote the area covered by at least k out of n
beacons, we may write

] in terms of r and n

£

* Suppose that there are i beacons deployed and the area of the
j—covered region is C/. If the (i + 1)*" beacon adds an extra

] —E [c,f] _E [an“]

area X,?.H to the j—covered region, the new size of j—covered
region will be . . '
J o _ J
G =G +X,



Uncertainty in the Localization of a Sensor

o If Ff-ﬂ denotes the fraction of the extra area contributed by
the addition of the (i + 1)t beacon, it is expected to be

E|c]|-E[c"]

E [F 'J+1} - Ib
e An recursive formula® shown below can be used to evaluate
E|c/]
E|c|=pE[cF] + - pE|d,]
E|Acov
where p = [,b@ﬂ

1Result from 'Expected k-coverage in Wireless Sensor Networks', Li-Hsing
Yen et al.



Simulation Results

e | =25m, b=25m
e A 100 x 100 grid assumed to evaluate coverage area

e Number of random deployment experiments over which
averaging is performed = 10000



Average Whitespace vs. r
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Figure: Average whitespace (as a percentage of the total area) as a
function of beacon radius. The mean absolute percentage error between
theoretical and experimental values = 5.98%



Average Uncertainty vs. r
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Figure: Average uncertainty (as a percentage of the total area) as a
function of beacon radius for n=3 and r =0:2: 10m.



Summary

e Average uncertainty in the localization of a sensor placed in a
field of beacons and available whitespace are functions of
beacon radius (r) and number of beacons (n)

e The expected coverage of a single beacon deployed in a region
of finite dimensions is lesser than its node coverage

e When two or more beacons are deployed uniformly at random,
the average size of whitespace region is a polynomial
decreasing function of beacon radius

e The average uncertainty in the association of a unique

location in the region, given a vector of power values, attains
a minimum for a certain value of r, for a given value of n.
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